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Improving Value of Information Analysis in Health Risk Management

Abstract

Value of information (VOI) analysis is a decision analytic approach for evaluating 

the benefit of collecting additional information to reduce or eliminate uncertainty in a 

specific decision making context. Though experts have encouraged the use of a VOI 

approach in framing complex decision-making problems where uncertainties are large 

and stakes are high, formal VOI analysis do not yet play a major role in regulatory 

decision-making.

Section 1 of the thesis explores the evolution of the VOI methods in health risk 

management through a comprehensive content analysis of VOI applications in the peer 

reviewed health literature. Chapter 1 shows the evolution of the methodology and 

advances in computing tools that allow analysis of problems with greater complexity.

The analysis shows a lack of standardization of reporting methods and results, and little 

cross-fertilization across topic areas. Chapter 2 narrows the focus to applications in 

environmental health risk management (EHRM) and provides risk analysts and decision 

scientists with some guidance on how to structure and solve VOI problems related to 

EHRM decisions.

Section 2 applies the VOI framework to a tiered toxicological testing program and 

explores the question: How much should uncertainty about risk be reduced before action
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is taken? Chapter 3 examines the optimal testing strategy from the perspective of a net 

benefits maximizing decision maker who is able to regulate chemical exposures based on 

predictions of carcinogenicity from lower tier tests. The analysis shows that both the 

level of expected human exposure and economic considerations such as control costs for 

reducing exposure are critical in the decision to pursue further testing, and that for a wide 

rage of exposures and costs, testing is not optimal. Furthermore, for a set of plausible 

exposure and control costs, it is optimal to regulate without further testing. Chapter 4 

explores the optimal testing strategy of a constrained decision maker who, absent 

applicable human data, cannot regulate without bioassay data on a specific chemical.

The analysis shows that delaying action until all tests results are available can lead to 

substantially lower societal net benefits for a large range of environmental exposures
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There are those who believe that there is something "cold and inhuman" about rational 
analysis. I believe that to be human is to be reasoning as well as compassionate. My 
ideal here is Buddha:

Perhaps the most striking thing about him, to use the words of J. B. Pratt, 
was his combination of a cool head and a warm heart, a blend which 
shielded him from sentimentality on the one hand and indifference on the 
other. He was undoubtedly one of the great rationalists of all times, 
resembling in this respect no one as much as Socrates. Every problem 
that came his way was automatically subjected to the cold, analytical 
glare of his intellect. First, it would be dissected into its component parts, 
after which these would be reassembled in logical, architectonic order 
with their meaning and import laid bare.

H. Smith, The Religions o f Man
Perhaps Buddha was the first decision analyst.

Ronald Howard, "An Assessment of Decision Analysis"
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Abstract

This paper provides the first comprehensive review of value of information (VOI) 

analyses related to health risk management published in English in peer-reviewed 

journals by the end of 2001. VOI analysis is a decision analytic technique that explicitly 

evaluates the losses from errors in decision making due to uncertainty and evaluates the 

benefit of collecting additional information to reduce or eliminate uncertainty. Through a 

content analysis of VOI applications, this paper characterizes various attributes of VOI 

applications, shows the evolution of the methodology and advances in computing tools 

that allow analysis of problems with greater complexity, and suggests some 

standardization of reporting methods and results. Our analysis shows a lack of cross­

fertilization across topic areas, and the tendency of papers to focus on demonstrating the 

usefulness of the VOI approach rather than applications to actual management decisions.

Key words: value of information, Bayesian decision theory, preposterior analysis, data 

worth, health risk management
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1. Introduction

Value of information (VOI) analysis is a decision analytic approach for evaluating 

the benefit of collecting additional information to reduce or eliminate uncertainty in a 

specific decision making context. It answers the question: how much should we be 

willing to pay for additional information? Recent reports from experts panels suggest 

that the VOI approach can be particularly useful in framing complex decision-making 

problems where uncertainties are large and stakes are high,(1’2) but the complexity of 

models make solving many VOI problems difficult. Advances in computing technology 

and simulation techniques appear to be allowing analysts to more efficiently obtain 

reliable answers. Unfortunately, researchers do not necessarily benefit from progress 

made in other fields since different disciplines use different terminology, and the studies 

are published in a wide variety of journals.

This paper provides the first comprehensive review of VOI applications related to 

health risks, and summarizes important methodological advances. Through a content 

analysis of VOI applications, this paper characterizes various attributes of VOI 

applications, shows the evolution of the methodology and advances in computing tools 

that allow analysis of problems with greater complexity, and identifies remaining 

analytical challenges including issues such as the valuation of attributes. Section 2 

defines VOI analysis and provides references on the basic methods and properties of VOI 

analyses, section 3 summarizes the content of the value of information literature analysis 

(VOILA) database, section 4 provides a discussion of results, and section 5 contains 

concluding remarks.
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2. Value of Information Analysis

Described in some of the earliest publications on decision analysis decades ago/3' 

8) VOI is defined as the difference between the expected utility of the optimal action 

given new information, and the expected utility of the optimal action given information 

available prior to collecting additional information, under an expected utility 

maximization framework. As Howard(6) noted, "no theory that involves just the 

probabilities of outcomes without considering their consequences could possibly be 

adequate in describing the importance of uncertainty to a decision maker." VOI analysis 

makes losses from errors in decision making due to uncertainty explicit and identifies the 

"best" information collection strategy as one that leads to the greatest net benefit to the 

decision maker (DM). In the medical decision making literature, Weinstein et al.(9) 

outlined the application of the concept where health is the only outcome of concern, and 

Phelps and Mushlin(10) outlined a framework in medical technology assessment which 

takes into account the cost of the technology.

VOI analysis requires modeling the available set of actions, prior belief about 

the uncertain input, belief about the accuracy of the information collected, the 

consequences of actions given the true value of the uncertain input, and the DM’s 

preferences. The decision can be modeled as making a choice between a discrete set of 

actions or selecting an optimal level from a continuous decision variable (e.g., amount of 

soil to dredge). The prior belief about the uncertain input and the accuracy of 

information collected must be characterized using probability distributions. These input 

distributions can be a discrete set of value-probability pairs when the input values are
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discrete, a parametric distribution function that is uniquely defined by a set of parameters 

such as the mean and standard deviation, or an empirical distribution function based on a 

data set of observed values/1 The analysis must quantify all relevant consequences of 

actions from the perspective of the DM, and value monetary and non-monetary outcomes 

using a common metric (typically dollars in the context of VOI).

In a review of general results, Hilton(12) found no general monotonic relationship 

between VOI and action flexibility (i.e., increasing actions available to the DM), level of 

DM’s risk aversion, DM’s wealth, or the level of initial uncertainty in the prior 

distribution, while emphasizing the "model-specificity and meagemess of the general 

results in this area." The key insight from these properties is that an analyst cannot 

"conservatively" model a VOI problem to bias VOI towards a low value; each component 

of a VOI must be modeled to reflect the best available knowledge. By definition, VOI 

measures the increase in utility given information and thus for information about an 

uncertain input to have value it must at a minimum change the DM’s optimal action in 

some scenarios (i.e., if the DM’s action is always the same with and without information 

so that his or her utility does not change, then the VOI is zero for that particular decision 

context). The cost of collecting information must be lower than the VOI or there will be 

a net decrease in welfare if information is collected.

In their seminal book, Applied Statistical Decision Theory,(5) introduced the 

concept of the expected value of perfect information (EVPI). EVPI is the difference in 

expected utility under perfect information (for each possible value of the uncertain input, 

s, the DM takes an action, a, that maximizes utility) and the expected utility under prior
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information (the DM chooses the action which yields the highest expected utility without 

additional information):

EVPI = E{maxa U(a,s)} -  maxa E{U(a,s)}

Calculating the expected utility under perfect information requires the assessment of the 

optimal action for all possible values of s, and then finding the weighted average of the 

resulting utility values over the prior belief about the likelihood of each event. Howard(5) 

also use the concept of opportunity loss, or regret, to explain EVPI. Under uncertainty, 

no matter what action the DM chooses to take, there is a chance that a different action 

would have yielded a higher utility level, once the true state of the world is revealed 

(barring a dominant strategy). The difference between utility given a priori action and a 

posteriori optimal action (a*) is the opportunity loss of taking action under uncertainty. 

The action that minimizes expected opportunity loss also maximizes expected utility:

mina EOL = mina [Es{U(a* s) -  Es{U(a,s)}] = Es{U(a*,.v)} - maxa Es{U(a,s)} =

EVPI

If the DM's a priori action minimizes EOL, EOL is equivalent to EVPI. Therefore, EVPI 

can be interpreted as the loss or regret associated with decision errors. One note of 

caution is that VOI can underestimate true societal value of perfect information since 

there may be positive externalities from information collection (i.e., additional decisions 

not directly modeled that may be improved from the information collected). In addition, 

collecting additional information may lead to surprises that show some basic assumptions 

may be incorrect such as observing input values outside the bounds of prior belief (13’14).

An innovation introduced by Howard(6) was the concept of "clairvoyance" about a 

single uncertain input when multiple uncertainties exist in a model, which some
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researchers^5) refer to as the expected value of perfect X information (EVPXI) (where X 

is a particular uncertain model input). EVPXI is the difference between the expected 

utility from taking the optimal action based on the revelation of the exact value of one 

uncertain input, and the expected utility from the optimal decision given only the prior 

information. EVPXI is a useful measure for determining the relative importance of 

resolving uncertainty between inputs, and has been proposed as the ideal measure for 

sensitivity analysis in decision analytic problems.(16,17) EVPXI has a peculiar non­

additive property such that the sum of EVPXI from all sources of uncertainty do not 

necessarily sum to the total EVPI for resolving all uncertainties simultaneously.(6,18,19) 

This property highlights the importance of explicitly considering different sets of 

information collection activities since the exact value of information for combined sets of 

information cannot be inferred from total EVPI or individual EVPXIs.

In most cases obtaining perfect information may not be possible, therefore the 

relevant measure of information value is the expected value of sample information 

(EVSI) or the expected value of imperfect information (EVII). EVSI is the difference 

between the expected utility under imperfect information (for each possible value of 

sample information, x, the DM takes an action, a, that maximizes utility) and the 

expected utility under prior information (the DM chooses the action which yields the 

highest expected utility without additional information):

EVSI = Ex[maxa Es|x{U(a,.y)}] -  maxa Es{U(a,s)}

The calculation of EVSI requires a Bayesian preposterior analysis, so called since a 

decision must be made before the information is collected and sample outcome is known. 

It requires constructing posterior probabilities for all possible values of experimental
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results, finding the expected utility for taking the optimal action for each experimental 

result, and taking a weighted average of the resulting utility values over the prior belief 

about the likelihood of each result.

Since EVPI is a simpler calculation, it can serve as a useful upper bound for the 

value of additional sample information in a particular decision context; if the cost of 

collecting imperfect information is greater than the EVPI, one should not collect the 

information. However, as Howard(7) states in an early application of the EVPI technique 

to a simple bidding problem, "even an elementary problem of this type may be far from 

trivial in the familiarity with probabilistic operations required to derive the results one 

would like to examine." Given the complexity of solving just the underlying 

probabilistic decision analysis problem, it is not surprising that very few VOI 

applications exist.

Analysts can use several strategies to obtain or estimate the solution to a VOI 

problem.(20) If the uncertainty is characterized with a discrete distribution, the simplest 

applications can be solved with "pencil and paper" by rolling back the decision tree and 

for more complex models analysts can use off-the-shelf software using decision trees to 

solve the problem. For a small number of carefully chosen models with continuous 

distributions, simple applications may have closed form solutions that yield exact values. 

For more complex problems with continuous inputs, the strategies include simulation, 

analytical approximation methods such as the method of moments that use Taylor series 

expansions, or discretization of the continuous inputs using methods such as Gaussian 

quadrature(21) so that the problem can be solved as if the model inputs were discrete. As 

the complexity of the decision problem increases, using a traditional decision tree with
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discrete inputs can become intractable since this strategy is exponential in computational 

effort (e.g., it requires mn computations for m inputs and n different values for each 

input). In contrast, simulation, which randomly samples m model input "draws" for each 

iteration for n iterations, is linear in computational effort (mn), with the precision of the 

estimate increasing as n increases.

3. Survey of VOI Applications

The VOILA database includes only studies that meet the following entry criteria: 

(1) published in a peer reviewed journal by the end of 2001, (2) written in English, (3) 

authors calculate the key components of EVPI or EVSI, and (4) the decision involves 

management of a health risk. We conducted a literature search using three strategies: 

first, we search for key words such as "value of information," "information value," "value 

of perfect information," "value of sample information," "data worth," "worth of data," 

and "preposterior analysis" in electronic indexes (e.g., ISI Web of Science, Medline); 

second, we search cited reference in all identified VOI applications; and third, we 

searched citing references of all identified VOI applications using the ISI Web of 

Science. (The appendix lists all of the information that we collected about each 

application and the reader can gain access to the database from www.voila.harvard.edu).

We identified a total of 44 VOI applications in 42 papers(16,17,22'61) that met our 

entry criteria (Felli and Hazen(16), include three separate applications in one paper).

Table 1.1 lists the 23 journals that published the applications and notes the number of 

papers found in each journal in parentheses. The journals cover a wide range of topics, 

most publishing only one application, and only five journals contained three or more
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papers. Figure 1 plots the cumulative number of VOI papers published over the last three 

decades.

We separated the applications into two fields and five topic areas to compare 

attributes across different disciplines. Table 1.2 provides a list of the tables by topic area 

along with summary information about some of the attributes that we recorded in the 

database (see the complete list of these in the appendix or on the website). The medical 

field applications (18 papers) cover the topics of:

• general medical care applications that focus on evaluation of diagnostic technologies 

to improve treatment decisions and on resolving uncertainty in a cost-effectiveness 

analysis of treatment decisions (9 papers with 11 applications, 25% of the database), 

and

• clinical trials that focus on applications that seek to optimize the value of information 

obtained in a trial by setting parameters of the trial such as the number of participants 

and duration (9 papers, 20% of the database).

The environmental field applications (24 papers) cover the topics of

• general environmental health applications that focus on pollution control decisions to 

improve health that were not hydrogeologically- or toxicologically-oriented (9 papers, 

20% of the database),

• water contamination (20%) applications that focus on remediation decision in ground 

water contamination (9 papers, 20% of the database), and

• toxicology applications that focus on optimal testing strategies for determining the 

carcinogenicity of a chemical (6 papers, 14% or the database).
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Although the VOI technique was developed in the 1960’s, the first application in the 

environmental filed did not appear in journal publications until 1976, and the first 

medical application did not appear until 1981. As shown in Figure 1, environmental 

applications steadily increased the late 1980’s to early 1990’s, but appear to have flattened 

out in the last few years. In contrast, the medical applications did not catch on until the 

mid 1990’s but has been increasing rapidly in the last few years.

Exploring the attributes provided in Table 1.2, most of the applications had a 

limited set of actions to choose from, with 61 percent of all applications only having two 

actions (i.e., do nothing and do something). However, rather than a discrete set of 

actions, seven applications in the general environmental health and water contamination 

areas developed models that focused on finding an optimal level of pollution control 

given a particular control technology. Overall, applications we classified as general 

environmental health had the highest average number of actions. Further, a quarter of the 

applications did not consider any information collection strategies since these 

applications considered only the value of perfect information, while another quarter only 

considered collecting some information or none. However, 12 applications (27%) 

considered the optimal level of information collection and thus considered infinite 

information collection strategies. Twenty-five of the applications (57%) had only one 

uncertain input in their analysis, and among the five topic areas, general environmental 

health and medical care applications had the highest average number of uncertain inputs.

Overall, about half of the applications we classified as general environmental 

health calculated only the expected value of perfect information (i.e., EVPI or EVPXI) 

and the other half only the expected value of sample information (i.e., EVSI or EVSXI).
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On the other hand, applications in toxicology focused mainly on expected value of 

sample information. Very few applications calculate the value of information from one 

of the sources of uncertainty (i.e., EVPXI or EVSXI) (23%); a finding that is not 

surprising given that the majority of applications included only one source of uncertainty 

in their analysis.

We observed a shift toward the use of simulation as a solution strategy with 

nearly a third of the papers using simulation and all of these since 1990. As shown in 

Table 1.2, eleven applications (25%) used a discrete distribution to characterize 

uncertainty and used simple algebra or a discrete tree to solve the VOI problem, six 

applications (14%) used a closed form solution, two applications used a method of 

moments approach, seven applications (16%) used various methods to discretize 

continuous distributions, and for three applications we could not determine the solution 

strategy based on the information in the published paper. We tested whether applications 

that used simulation as a solution strategy had higher number of uncertain inputs in their 

analyses using Spearman’s rank correlation and found a statistically significant positive 

rank correlation (p = 0.503, P = 0.0005). In addition, simulation has a statistically 

significant positive rank correlation with whether an analysis includes the calculation of 

EVPXI (p = 0.407, P = 0.0004).

We also tracked the citations and noted that little cross-fertilization exists between 

analysts who work in different fields; only 9 papers (21%) cite a VOILA article outside 

of their topic area. Overall, only 70% of the papers cite a previously published VOILA 

article and 40% of papers cite one of the original decision analysis texts by Howard or 

Raiffa and colleagues/38'
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Table 1.3 summarizes our overall findings from the attributes of VOI applications 

that we recorded by topic area by providing the counts of the number of applications in 

each field and overall that were characterized by the attribute listed in the left-most 

column. Nearly half of the papers in the VOILA database did not use the terminology 

"information value," "value of information," "value of perfect information," or "value of 

sample information" in their title, abstract, or keyword. Nearly a quarter did not use the 

term in the text when describing the analysis. In terms of motivation for the decisions 

and perspective, general environmental health, toxicology, and clinical trial applications 

focused primarily on societal level policy decisions and the societal perspective, while 

most water contamination applications focused on firm level decisions and firm 

perspective, and the medical care applications almost exclusively on individual treatment 

decisions although these were generally split between the individual patient perspective 

and a societal perspective.

All of the applications explicitly or implicitly assumed risk neutrality for the DM. 

General environmental health and toxicology applications used a framework of either 

minimizing total costs (CBA) or maximizing total benefits (BCA), while medical 

applications most often used a cost-effectiveness analysis (CEA) approach. Although the 

near equivalence of CBA/BCA and CEA has been established,(62) the methods are distinct 

in that CBA/BCA requires the separate monetization of health effects (e.g., morbidity, 

mortality), while the CEA method sets a value per unit of "effectiveness" that combine 

morbidity and mortality effects in a single unit, most often Quality Adjusted Life Year 

(QALY) as recommended by the panel on cost-effectiveness.(63) In the general 

environmental health applications, three of the papers used a cost minimization approach
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to meet an exogenously determined health based standard. All but one of the water 

contamination applications was modeled similarly as a cost minimization problem to 

meet a specific external standard. In the clinical trial applications, one analysis from a 

health plan’s perspective considered only the cost and none of the health benefits. In the 

general medical care applications, three of the applications assumed no cost to the patient 

and considered only non-monetized health benefits, while one application considered 

only costs in the analysis.

Surprisingly few applications reported whether all monetary values were adjusted 

to a common year dollar (25%). In addition, only about half of the applications reported 

a non-zero value for a discount rate used in the analysis with values ranging from 2.5% to 

10% for their base case analyses. Most applications calculated the information as a one­

time benefit rather than explicitly considering the time horizon for how long the 

information that is collected will be useful in decision making. Likewise, only about a 

quarter of the applications aggregate the value of information over the entire population 

that would benefit from the reduction in uncertainty.

A handful of applications valued only a crude lump sum value for consequences of 

various outcomes (e.g., lose $10 million for failing to regulate a carcinogen, lose 

$400,000 for incorrectly treating a health patient for cancer). The 12 applications (27%) 

that use a CEA framework, use a variety of "effectiveness" units, but the most common 

are QALYs. Table 1.4 shows the value of QALYs used in the base case VOI calculation 

in these applications. As the table shows, the nominal values range from $25,000 to 

$100,000. A cut-off of $50,000 is a very popular value, however, when this value is 

adjusted to 2002 dollar using the CPI, we can see that based on when the analysis is
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conducted, the value ranges from $51,000 to $62,000 (note if a year dollar was not 

reported, we assumed the publication year). As Table 1.5 shows, there is an even wider 

range of baseline values for premature death used in applications with a CBA/BCA 

framework; once adjusted to 2002 dollars, the values range from $94,000 to $12 million.

As shown in Table 1.3, morbidity effects were specifically monetized in only 

three studies. Only one application valued ecological damage. All of the applications, 

except six that used a crude lump sum total value for consequences and three medical 

applications that considered only health effects specifically, value the cost of pollution 

control or treatment of disease. Only 28 of the applications (64%) specifically valued the 

cost of collecting information.

In characterizing uncertainty, twelve of the applications used a binary input (e.g., 

carcinogenic or nor, disease positive or not) and used discrete probability distributions. 

Only five applications (11%), all in the water contamination topic, specifically model 

variability distinct from uncertainty using a distribution. In addition, only eight 

applications (18%) use subgroups in their analyses to reflect variability in the population. 

The toxicology, water contamination, and general medical care applications with binary 

uncertain variables used discrete distributions, while general environmental health and 

clinical trial applications tended to use parametric distributions in characterizing 

uncertainty. Only three applications (7%) used an empirical distribution. Sixteen 

applications (36%) used only hypothetical/synthetic data for characterizing uncertainty. 

Most applications used empirical data (57%), very few used expert judgment (7%) or 

model output (9%) as data sources for characterizing uncertainty.
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A handful of applications (14%) used a threshold approach to determine 

conditions under which VOI, net of information collection costs, would be positive rather 

than calculate VOI directly. In contrast, about a quarter of the applications used 

maximizing VOI as the criteria for deciding the optimal information collection strategy. 

Many applications (34%) characterize EVPI as an overestimate of true VOI since it 

analyzes the collection of hypothetical perfect information. Surprisingly few (7%) discuss 

the possibility that the EVPI is an underestimate of true value of perfect information, 

ignoring the possibility that information could be useful in other decision contexts or 

"surprises" not explicitly modeled in the analysis could be gained from sampling.

4. Discussion

The VOILA database represents the first synthesis of VOI analyses in health risk 

management. The review of these analyses shows that there is little cross fertilization 

between fields; different fields use different terminology, papers are published in a wide 

variety of journals, and authors rarely cite applications in other fields. The difficulty in 

locating VOI applications underscores the importance of gathering a comprehensive 

database to serve as a resource for decision analysis practitioners and decision makers 

who want to explore the use of VOI techniques. A separate analysis focuses on 

computational issues and the narrow environmental health risk set of applications.

The review shows that VOI analyses do not appear to follow a linear progression; 

clusters of analysts tend to build on previous work within a field, but the progress does 

not necessarily spread widely even within the field. For example, Reichard and Evans(54) 

explain the concept of EVPXI and include its calculation in their analysis, however,
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James et al.,(60) also published in the water resources literature, use an inferential 

approach based on the Kolmogorov-Smimov statistic to rank the importance of uncertain 

inputs in contributing to opportunity loss. It is not clear whether the authors were 

unaware of the EVPXI approach, or they felt their approach was some how superior, but 

it is curious to revert to an inference approach when one can directly calculate the relative 

contribution of each uncertain input to decision error through EVPXI analysis. 

Complexity of models, as measured by the number of uncertain inputs, does not appear to 

be increasing over time (i.e., no statistically significant correlation with publication date), 

however, it is correlated with whether an application uses simulation or not. Like wise, 

simulation appears to be allowing analysts to calculate EVPXI more easily.

The applications in the VOILA database primarily provide illustrations of VOI 

methods, and they do not typically represent a true application to a real-world situation. 

This tendency of the analysis in part explains why many of the applications include only 

once uncertain input, use only hypothetical data, use generic values for consequences, 

and do not include a specific dollar year or a discount rate. However, the failure to report 

key information for the analysis (e.g., perspective, discount rate, year dollar, time 

horizon, solution method) sets a bad precedent for the field. VOI literature would benefit 

from some standardization of reporting methods and results. All applications should at 

minimum report a table of values used in the analysis including parameters of 

distributions functions and their sources, and a discussion of the strategy used to solve the 

VOI problem. Without this information, it is difficult for analysts to learn from each 

other, and replication of the results becomes impossible. The list of attributes provided in
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this content analysis may serve as a starting point for experts to build a reporting 

standard.

One area that gets too little attention in the current VOI literature is the issue of 

under estimating VOI. Although many applications characterize EVPI as an "upper 

bound" for EVSI, they ignore the limitations in their analyses that make the calculated 

EVPI an under estimate of true value of perfect information in a larger context. 

Threshold analyses evaluating conditions that would yield positive information value net 

of costs may be a good first cut analysis, but from the perspective of a DM who 

maximizes utility, the optimal information collection strategy is the one that yields the 

highest value, not the point where the benefits are out weighed by costs. In addition, 

roughly 40% of the applications do not take a societal perspective in their analyses, 

which may greatly underestimate the overall value of the information collected. For 

example, the clinical trial applications analyzed from the provider’s perspective do not 

account for the benefit of the information collected to other users of the drug or 

technology under study(33,36). None of the papers directly address the possibility that 

additional information will show current characterization of uncertainty to be overly 

confident such that it may lead to an under estimation of the benefit of information 

collection in some cases.

Another area that would benefit from more discussion by analysts is the issue of 

valuing outcomes. Although cost effectiveness analyses on medical diagnostic 

technologies abound, very few place a value per unit of effectiveness that would allow 

the calculation of VOI. In addition, as illustrated by the valuation in the medical 

applications in the VOILA database, the lack of consistency in the value per QALY
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across analyses suggests that analysts need to think more about the impact of time. As 

the popular nominal cut-off of $50,000 illustrate, using the same round-number cost- 

effectiveness threshold year after year, analysts are systematically devaluing the real 

value of a QALY. Similarly, environmental applications which tend to focus on "lives 

saved" as the metric for outcomes often ignore the magnitude of life extension so that, 

unlike a QALY approach, it under values reducing risks to children compared to the 

elderly. In addition, the applications do not necessarily value morbidity effects so that 

improving chronic illnesses that do not lead to immediate death would be under valued. 

Similarly, environmental applications often have ecological benefits beyond human 

health improvements that are often ignored in the analyses.

The literature to date, in general, have adequately explored the basic components 

of VOI analysis and methods, and have illustrated the benefit of a VOI approach to 

inform research planning decisions. What is needed are more applications to specific 

management decision to address the important remaining challenges such as how to best 

characterize uncertainties in the decision models and how to solve increasingly 

complicated VOI calculations with large number of uncertain inputs as well as inputs 

which vary over the target population.

5. Conclusion

As Howard® notes, "placing a value on the reduction of uncertainty is the first 

step in experimental design, for only when we know what it is worth to reduce 

uncertainty do we have a basis for allocating our resources in experimentation designed 

to reduce the uncertainty." VOI analysis is an important input to decision making for any
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program or policy that considers collecting information to manage health risks. The 

comprehensive review in this paper provides the first synthesis of how analysts have 

analytically approached answering the question: how much should we be willing to pay 

to resolve uncertainty? The VOILA database provides a comprehensive reference for 

analysts and decision makers who wish to use this approach that may help in efforts to 

move past the demonstration phase of VOI into its real use in the context of actual health 

risk management decisions. In addition, this review provides an opportunity for 

researchers focused in one health risk area to take advantage of opportunities to learn 

from and build on the work of others. Significant methodological issues remain in the 

context of solving larger and more complicated problems focused on assessing the value 

of actual sample data to be obtained and to perform some of the complicated dynamic 

Bayesian analyses that may result. Nonetheless, with the increasing evolution of 

simulation strategies, the basic methods required to solve even fairly complex VOI 

problems and examples of such solved problems can be found in the literature if analysts 

know where to look.
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Figure 1.1: Cumulative number of VOI applications over time
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Table 1.1: Journals that published VOI applications

The American Journal of Managed Care (1)

American Journal of Public Health (1)

Annals of Internal Medicine (1)

Computers & Operations Research (1)

Controlled Clinical Trials (1)

Environmental Toxicology and Chemistry (1)

European Journal of Operations Research (1)

Ground Water (1)

Health Economics (3)

IEEE Transactions on Pattern Analysis and Machine Intelligence (1) 

International Journal of Technology Assessment in Health Care (1) 

Journal of Acquired Immune Deficiency Syndromes (1)

Journal of Environmental Economics and Management (1)

Journal of Health Economics (3)

Journal of the Air Pollution Control Association (2)

Journal of the American College of Toxicology (1)

Journal of Water Resources Planning and Management (2)

Medical Decision Making (4)

Molecular Carcinogenesis (1)

Nature (2)

Risk Analysis (5)

Statistical Science (1)

Water Resources Research (6)

Note: Number of papers found in each journal in parentheses
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Table 1.2: Summary of papers in VOILA database by topic area
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General Medical Care

Mooney et al.(22) 4 2 1 X X Disc

Heckerman et al.(23) 2 2 1 X Disc X

Mehrez et al.(24) 2 00 1 X X Closed X

Owens and Nease(25) 2 2 1 X Disc X

Felli and Hazen(16) 3 0 6 X X Simul X X

Felli and Hazen(16) 2 0 7 X X Simul - - -

Felli and Hazen(l6) 2 0 9 X X Simul - - -

Felli and Hazen(1?) 4 0 10 X X Simul X X

Hunink et al.(26) 2 5 1 X Disc

Claxton et al.(27) 2 0 8 X X Simul X X X

Meltzer(28) 2 2 1 X X Disc X X X

Clinical Trials

Thompson(29) 2 00 2 X X D Con X

Paltiel and Kaplan(30) 2 4 1 X X Indet

Claxton and Posnett(31) 2 00 1 X X Closed X

Hornberger(32) 2 00 2 X X Indet X

Homberger and Eghtesady(33) 2 00 2 X X D Con X

Claxton(34) 2 00 1 X X Closed X X X

Claxton(35) 2 00 1 X X Closed X X

Cher and Maclure(36) 2 00 1 X X Simul X X

Claxton and Thompson(37) 5 00 1 X Closed X X X

General Environmental Health

North and Merkhofer(38) 4 0 2 X Indet X

Finkel and Evans(39) 3 0 2 X X D Con X

Evans et al.(40) 5 2 2 X D Con X X

Chao et al.(41) 00 2 3 X D Con
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Dakins et a l/42) 00 0 6 X Simul X X X

Dakins et al.(43) 00 4 1 X Simul X X

Thompson and Evans(44) 11 0 14 X X Simul X X

Lin et al.(45) 2 4 1 X Simul X

Bartell et al.(46) 2 4 7 X Simul X X

Toxicology

Lave and Omenn(47) 2 2 1 X Disc

Lave and Omenn(48) 2 2 1 X Disc X

Lave et al.(49) 2 2 1 X Disc X

Olson(50) 2 3 1 X Disc X

Taylor et al.(51) 2 3 1 X X D Con X X X

Omenn et al.(52) 2 2 1 X Disc X

Water Contamination

Massmann and Freeze(53) 2 3 1 X Closed

Reichard and Evans(54) 2 4 2 X X X D Con X X X

Tucciarelli and Pinder(55) 00 4 1 X Mom X

Freeze et al.(56) 2 2 1 X X Disc X

Wagner et al.(57) oo 0 1 X Simul

James and Freeze(58) 2 00 1 X X Simul X

James and Gorelick(59) 00 oo 3 X X Simul X

James et al.(60) 3 0 13 X Simul X

Wagner(61) 00 00 6 X X Mom X

Note: Act = number of actions; Info = number of information collection strategies; Unc = number 
of uncertain inputs; EVPI = calculated EVPI; EVSI = calculated EVSI; EVPXI = calculated 
EVPXI; EVSXI = calculated EVSXI; Disc = discrete; Closed = closed form; Mom = method of 
moments; D Con = discretized continuous distribution; Simul = simulation; Indet = solution 
method indeterminate; VOILA = cited a paper in the VOILA database; Outside = cited a VOILA 
paper outside their topic area; Orig = cited one of the original decision analysis texts by Howard 
or Raiffa and colleagues
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Table 1.3: Attributes of VOI analyses by topic area (count of applications)

Med Trial EH
Wate

r
Tox All

Total Applications 11 9 9 9 6 44 -

Terminology

"VOI" term in abstract or key words 7 3 6 4 3 23 52%

"VOI" used in text 9 7 8 5 5 34 77%

Motivation for decision

Societal policy 1 7 8 1 6 23 52%

Corporate decision 1 2 0 8 0 11 25%

Individual decision 9 0 2 0 0 11 25%

Perspectives

Societal perspective 5 7 8 1 6 27 61%

Corporate perspective 1 2 0 8 0 11 25%

Individual perspective 5 0 2 0 0 7 16%

Decision Analytic Framework

Cost-benefit or benefit-cost analysis 1 2 6 1 6 16 36%

Cost-effectiveness analysis 6 6 0 0 0 12 27%

Other objective function 4 1 3 8 0 16 36%

Valuation

Year dollar reported 3 1 4 2 1 11 25%

Non-zero discount rate reported 3 6 5 5 1 20 45%

Time horizon for useful life of info 2 7 0 6 1 16 36%

Aggregate for total affected population 2 8 0 1 1 12 27%

Lump sum consequence of outcome 1 0 1 0 4 6 14%

Value per effectiveness 6 6 0 0 0 12 27%

Premature death averted 0 2 5 1 2 10 23%

Morbidity prevented 0 1 2 0 0 3 7%

Ecological damage 0 0 1 0 0 1 2%

Cost of control/treatment 6 9 9 9 2 35 80%

Cost of information collection 4 9 3 6 6 28 64%

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

Med Trial EH
Wate

r
Tox All

Uncertainty and Variability

Binary uncertain input 5 0 1 2 5 13 30%

Only one uncertain input 6 6 2 5 6 25 57%

Parametric variable input 0 0 0 5 0 5 11%

Includes subgroups 2 0 4 2 0 8 18%

Distribution

Discrete distribution 5 0 1 2 5 13 30%

Empirical distribution 1 1 1 0 0 3 7%

Parametric distribution 6 9 9 6 1 31 70%

Data Source

Only Hypothetical 3 6 2 5 0 16 36%

Empirical Data 7 3 6 3 6 25 57%

Expert Judgment 2 0 1 0 0 3 7%

Model Output 0 0 2 2 0 4 9%

Analysis

Threshold Analysis; VOI>0 1 0 1 1 3 6 14%

Maximize VOI 0 9 0 3 0 12 27%

EVPI "Overestimate" 2 4 3 6 0 15 34%

VOI "Underestimate” 0 0 2 1 0 3 7%
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Table 1.4: Base case value of quality adjusted life years (QALYs)

Reference Year Dollar Value per QALY 2002 Dollars

Mooney et al.(22) 1987 $25,000 $35,000

Owens and Nease<25) 1993 $50,000 $62,000

Homberger and Eghtesady(33) NR $50,000 $55,000

Homberger(32) NR $50,000 $55,000

Hunink et al.(26) 1996 $75,000 $86,000

Meltzer(28) NR $100,000 $101,000

Claxton et a l/27-* NR $50,000 $51,000
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Table 1.5: Base case value of life

Reference Year Dollar Value per life 2002 Dollars

North and Merkhofer(3X) NR $30,000 $94,000

Thompson(29) 1981 $175,000 $346,000

Finkel and Evans(39) NR $1,000,000 $1,600,000

Evans et al.(40) NR $3,000,000 $4,600,000

Reichard and Evans(54) NR $1,000,000 $1,500,000

Olson(50) 1986 $2,000,000 $3,300,000

Taylor et al.(5l) NR $10,000,000 $12,000,000

Thompson and Evans(44) 1989 $3,000,000 $4,400,000

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

Appendix

Information collected about each application

Background
• Title
• Authors
• Journal
• Year of publication
• Abstract
• Key words
• Cited references
• Citing references
• Topic area

Terminology
• Were the terms "information value", "value of information", "value of perfect 

information", or "value of sample information" in abstract or key words?
• In the text?

Motivation for decision
• Was the decision a societal policy?
• Corporate decision?
• Individual decision?

Perspectives
• Did the analysis take a societal perspective?
• Corporate perspective?
• Individual perspective?

Decision Variables
• Was the decision an optimization problem (i.e., use a continuous decision variable)?
• Number of discrete actions if not optimized (including do nothing)
• Was the information collection strategy an optimization problem?
• Number of discrete information collection strategies if not optimized (including 

collect no additional information)

Decision Analytic Framework
• Did the analysis use cost-benefit or benefit-cost analysis?
• Did the analysis use cost-effectiveness analysis?
• Or did they use a different framework?

Valuation
• Year of currency
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• Discount rate
• Time horizon for the useful life of information (i.e., when will the information 

become obsolete?)
• Total number of people affected by the information
• Crude, lump sum number to value the consequences of outcomes
• Value per effectiveness unit
• Value of premature death averted (e.g., loss of life, reduction in life years)
• Value of morbidity prevented (e.g., reduction in quality of life, pain and suffering)
• Value of ecological damage prevented
• Cost of control pollution/administering treatment
• Cost of information collection

Uncertainty and Variability
• Was the uncertain input binary (e.g., diseased or not, carcinogenic or not)?
• Number of uncertain inputs included in the VOI analysis
• Did the analysis contain a parametric variable input (e.g., spatially variable 

hydrogeologic input)?
• Include analysis by subgroups to account for variability?

Distribution
• Did the analysis characterize the uncertainty with a discrete distribution?
• An empirical distribution (i.e., discrete values observed in an empirical study)?
• A parametric distribution (e.g., normal, lognormal, uniform)?
• Some other distribution?

Data Source
• Did the analysis use hypothetical or synthetic data to characterize uncertainty?
• Empirical data?
• Formal expert judgment elicitation?
• Output of a separate model?

Analysis
• Did the analysis include components of EVPI? EVPXI? EVSI? EVSXI?
• Was the analysis framed as a threshold analysis (i.e., conditions which make VOI

positive)?
• Was it framed as a maximization of VOI?
• Was EVPI characterized as an overestimate or an upper bound or maximum 

willingness to pay for additional information?
• Was EVPI or EVSI characterized as an underestimate of true societal willingness to 

pay since information collection could be useful in other decision contexts, or may 
yield additional benefits not included in the analysis?

Solution Strategy
• Were all of the probabilities discrete (i.e., required only simple arithmetic or discrete 

tree)?
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• Was the problem solved exactly using closed form solution (e.g., used conjugate 
priors)?

• Method of moments approximation?
• Numerically integrate values or otherwise discretize continuous distributions?
• Monte Carlo simulation method?
• Or was the method indeterminate from the information given in the paper?
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Chapter 2: Value of Information Analysis in Environmental Health Risk 
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Fumie Yokota and Kimberly M. Thompson

To be published in Risk Analysis

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

Abstract

Experts agree that Value of Information (VOI) analyses can be useful in real risk 

management decisions, however, applications in environmental health risk management 

(EHRM) have largely been demonstrative thus far because of the complexity in modeling 

and solving VOI problems. Lack of VOI applications in actual management decisions is 

partly due to the inherent complexities in modeling the underlying probabilistic risk 

assessment. The main barrier, however, appears to be the complexity of solving value of 

information analyses, since even the simplest problems with continuous probability 

distributions can be difficult to solve. Currently, simulation allows analysts to solve more 

complex and realistic problems that may be useful in real decision making contexts. 

Nonetheless, many analytical challenges remain that inhibit greater use of VOI 

techniques, including issues related to modeling decisions, valuing outcomes, and 

characterizing uncertain and variable model inputs. The comprehensive review of 

methods for modeling and solving VOI problems and the critical review of applications 

related to EHRM in this paper provides the first synthesis of important methodological 

advances in the field. The insights gained from the review of methods and applications in 

the EHRM literature will provide risk analysts and decision scientists with some guidance 

on how to structure and solve VOI problems focused on evaluating opportunities to 

collect better information to improve environmental health risk management decisions.

Key words: value of information, Bayesian decision theory, environmental health, risk 

analysis, risk management
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1. Introduction

Value of information (VOI) analysis evaluates the benefit of collecting additional 

information to reduce or eliminate uncertainty in a specific decision making context. As 

noted in one of the earliest published VOI applications, "no theory that involves just the 

probabilities of outcomes without considering their consequences could possibly be 

adequate in describing the importance of uncertainty to a decision maker."(1 26) VOI 

analysis makes explicit any expected potential losses from errors in decision making due 

to uncertainty and identifies the "best" information collection strategy as one that leads to 

the greatest net benefit to the decision maker (DM). The recent 

Presidential/Congressional Commission on Risk Assessment and Risk Management 

(1997), noted that "when stakes in a decision are large and the uncertainties complex, risk 

managers or their technical staffs may find it useful to experiment with formal value-of- 

information tools. "(2:92) Although methods for modeling and solving VOI analyses were 

introduced in some of the earliest publications on decision analysis decades ago(1,3_7) and 

the potential utility of applying the framework to environmental health risk management 

(EHRM) is widely recognized, unlike other decision analytic methods such as cost- 

benefit analysis and cost-effectiveness analysis very few VOI applications in EHRM 

exist. Moreover, recent analysis of VOI applications shows the tendency of papers to 

focus on demonstrating the usefulness of the VOI approach rather than applications to 

actual management decisions.(8)

The lack of VOI applications in actual management decisions appears to arise in 

part from the inherent complexities in modeling the underlying probabilistic risk
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assessment and decision analysis. The analyst must model all relevant sets of actions and 

information collection strategies available to the DM, capture all significant 

consequences of each action given all possible states of the world, value those outcomes 

in a common metric, and characterize important uncertainty, variability, and the accuracy 

of information to be collected by fitting probability distributions to available information. 

In addition, for VOI calculations analysts cannot "conservatively" model a VOI problem 

to bias VOI towards a low value since no general monotonic relationships exist between 

VOI and action flexibility (i.e., increasing actions available to the DM), level of the DM’s 

risk aversion, the DM’s wealth, or the level of initial uncertainty in the prior 

distribution.(9)

The "experimentation" to date with the use of VOI analysis in EHRM decisions 

suggests that the complexity of models makes solving many VOI problems difficult. In 

particular, the solution of even the simplest VOI problem with continuous probability 

distributions can be computationally difficult.(6:60) While many texts exist to guide 

analysts in finding closed form solution to models with uncertainty expressed as set of 

discrete value-probability pairs or the small set of special continuous probability 

distributions with conjugate priors that allow analytical derivation of likelihood 

functions,(1’3'6,10) VOI analyses that inform real risk management decisions generally do 

not exactly fit into these simple forms and are nearly impossible to solve without 

numerical approximation methods.

With the increasing evolution of simulation strategies, examples of fairly complex 

VOI problems now appear in the literature. However, many analytical challenges remain 

and Ron Howard’s prediction in 1967 still rings true: "[I]t is inevitable that in the future
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both technical and managerial decision-makers will employ formal logical methods in 

decision-making. The transition will probably be painful."(6 60)

Currently, no analysis exists that demonstrates the impact of the choice of 

computational strategy on the accuracy of the approximation or how to correctly set up 

VOI analysis using methods such as simulation. The comprehensive review of methods 

for modeling and solving VOI problems and the critical review applications related to 

EHRM in this paper provides the first synthesis of important methodological advances in 

the field. In section 2 we define different types of VOI analysis and identify important 

issues related to modeling the VOI problem. In section 3 we demonstrate methods for 

solving VOI problems and compare the implications of different methods. Section 4 

provides a critical review of sixteen VOI applications in EHRM(11'26) and shows how 

advances in computing tools have allowed analysis of problems with greater complexity. 

Section 5 identifies remaining analytical challenges including issues related to modeling 

decisions, valuing outcomes, and characterizing uncertain and variable model inputs that 

inhibit greater use of VOI techniques. The insights gained from the review of methods 

and applications in the EHRM literature lead to conclusions and recommendations in 

section 6 that provide risk analysts and decision scientists with some guidance on how to 

structure and solve VOI problems focused on evaluating opportunities to collect better 

information to improve environmental health risk management decisions.
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2. Modeling Value of Information Analyses

The expected value of perfect information (EVPI) represents the value of 

completely eliminating uncertainty (i.e., collecting information with perfect accuracy). 

For an expected utility maximizer, EVPI about an uncertain input s is defined as:

EVPI ■f [seS  L

max u(a ,s )
ae A

f  (s)ds -  max
aeA

J u(a,s) f  (s)ds
sgS

( 1)

where f(s) is the probability distribution representing prior belief about the likelihood of 

s. The first term represents the weighted average of the utility associated with taking the 

optimal action for all possible values of 5 over the prior belief about the likelihood of s. 

The second term represents the expected utility from taking an action that yields the 

highest expected utility.

When the DM faces multiple sources of uncertainty, the expected value of perfect 

X information (EVPXI) (where X represents is a particular uncertain model input) can be 

a useful measure for determining the relative importance of resolving uncertainty 

between inputs. For example, if a DM faces two uncertain inputs x  and y, EVPI about x  

(called EVPXI) is:

EVPXI = f  max f  u ( a , x , y ) f ( y  \ x)dy
"  no. A »„  aeA  

x e X  y e Y

f ( x ) d x

-max
aeA

J  |  u(a ,x ,y )  f  (x ,y )dx  dy
y&Y x e X

(2)

where u(a,x,y) is the utility of the DM,/(y|x) is the prior conditional probability of y given 

x,f(x) is the prior probability of x, and f(x,y) is the prior joint distribution of x  and y. 

EVPXI is the difference between the expected utility from taking the optimal action 

based on the revelation of the exact value of one uncertain input, x, and the expected
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utility from the optimal decision given only the prior information. EVPXI has a peculiar 

non-additive property such that the sum of EVPXI from all sources of uncertainty do not 

necessarily sum to the total EVPI for resolving all uncertainties simultaneously/1,27,2̂  

Since obtaining perfect information is nearly impossible, the more relevant 

measure of information value in decision making is the expected value of sample 

information (EVSI) or expected value of imperfect information. Calculating EVSI 

requires a preposterior analysis, so called since a decision must be made before the 

information is collected and the sample outcome is known. It requires a Bayesian 

updating of the probability of s for all possible sample information, t. The posterior 

probability of 5 given observation t, is defined as:

where g(t\s) is the likelihood function of observing t given a state of the world s, and hit) 

is the predictive density of t:

K t ) =  J / ( * ) # ( *  1 ( 4)
s e S

The value of reducing but not eliminating uncertainty is:

tzT aeA
EVSI = f  max \ u (a ,s )p ( s \ t )d s  h ( t)d t~max  f  u ( a , s ) f  (s)ds

*  A J  a e A  "
s e S s e S

(5)

EVSI is the difference between the expected utility of taking the optimal action based on 

the posterior probability of s given experimental information t, and the expected utility 

from taking the optimal decision given only the prior information about s. Without 

approximation methods, EVSI analyses would be nearly impossible since predictive 

density of the information sampled (equation 4) does not have a closed form solution
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except for uncertainty expressed as a set of discrete probabilities or for select model 

structures such as likelihood functions with conjugate priors. In comparison, EVPI is a 

simpler calculation than the EVSI and may serve as a useful theoretical upper bound for 

the value of additional information for a particular decision context.

All VOI analyses require modeling a set of available actions, quantification and 

valuation of consequences, uncertainty and variability, and for EVSI, the accuracy of 

information collected. As discussed by Brand and Small,(29) within the context of the 

continuum from release of a substance into the environment to any ultimate health 

outcomes numerous opportunities may exist to obtain information and where these are 

obtained in the process may differentially impact the overall uncertainty about the final 

result. In any analysis, analysts can model the set of available actions and information 

collection strategies as a discrete set of actions or a continuous decision variable, and 

quantify all relevant consequences for each action, or value of the continuous decision 

variable, using an output value function that values monetary and non-monetary 

outcomes using a common metric, which is typically monetary in the context of VOI. 

The functional form and constraints must capture the objectives and preferences of the 

DM, such as risk aversion and discounting. For societal decisions and for decisions that 

impact large organizations that manage a portfolio of risks, typically the assumptions of 

risk neutrality and expected value decision making are applied, but these are not required 

for VOI problems. What is required is complete specification of the objective as a 

mathematical function, and model inputs as discrete values or random variables 

represented by probability distributions.
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Most difficult to model are the uncertainty and variability in the decision, two 

related but distinct concepts. As the National Research Council’s Committee on Risk 

Assessment of Hazardous Air Pollutants stated: "uncertainty forces decision makers to 

judge how probable it is that risks will be overestimated or underestimated for every 

member of the exposed population, whereas variability forces them to cope with the 

certainty that different individuals will be subjected to risks both above and below any 

reference point one chooses."(30:237) An intervention that is based on an average value of 

risk for a population will be too stringent for some and not stringent enough for others in 

the population.(31) These two concepts must be treated separately in VOI analyses since, 

unlike uncertainty, true variability cannot be reduced with more information.

The input distributions can include a discrete set of value-probability pairs when 

the input values are discrete, a distribution function that is uniquely defined by a set of 

parameters, an empirical distribution function based on a data set of observed values or 

subjective judgments from experts.(32) To characterize a distribution parametrically, 

analysts can use a variety of techniques for fitting available empirical data, formal expert 

judgment elicitation, or output from a model.(32'34) The type of distribution used should 

be selected to reflect the underlying scientific processes that generate the events 

characterized,(32) and it is critical to use a distribution that appropriately considers the 

characterization of uncertainty and variability.(24,27) When there are multiple inputs, the 

dependence must be characterized in the joint distribution. Fortunately, in those cases 

where inputs are independent, the joint distribution is simply the product of the two 

marginal distributions, greatly simplifying the calculation of VOI. This does not mean, 

however, that solving a VOI problem is easy.
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3. Solving Value of Information Analyses

3.1 Overview

While the simplest applications where the uncertainty is characterized with a 

discrete distribution can be solved with "pencil and paper" by rolling back the decision 

tree, for more complex models analysts can use off-the-shelf software using decision 

trees, or in many cases write their own code to solve large and complex problems since a 

discrete approximation strategy is exponential in computational effort. For a small 

number of carefully chosen models with continuous distributions, simple applications 

may have closed form solutions that yield exact values. In general, however, problems 

with continuous inputs are more complex and the analyst may need to use one of several 

numerical approximation methods.

One strategy is to approximate continuous inputs so that the problem can be 

solved as if the model inputs were discrete. Another strategy is to use simulation, which 

relies on randomly sampling input values to calculate an output value for each iteration 

and iterating enough times to create an output distribution that is a good approximation of 

the truth and is then used to make statistical inference.(27) The error in any approximation 

depends on how closely the input distributions used match the true distributions, which 

means that error decreases with increased computational effort where computational 

effort is a linear in the number of uncertain inputs.

We illustrate differences in solution strategies using a classic example from one of 

the first published illustrations of the VOI approach, an optimal bidding problem by 

Howard.(6) In this VOI problem, a company can make any bid to compete against
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competitors to win a contract for a project. The DM for the company seeks to maximize 

profits and is assumed to be risk neutral. The company will only win the contract if its bid 

is lower than the lowest bid of the competitors, but since bids are submitted in secret, the 

company is uncertain about its competitors’bids. Given this formulation, the company 

will maximize the expected value of profit:

profit = {b — c) I (/ >b) (6)

where b is the company’s bid, c is the uncertain cost of the project to the company, I is the 

lowest bid of the competitors, and I (/ >b) is an indicator variable that takes a value of 1

if the company wins the bid (/ > b) and 0 otherwise. The two uncertain inputs are 

characterized by uniform distributions with a lower bound of 0 and an upper bound of 1 

for the cost of the project, and a lower bound of 0 and an upper bound of 2 for the lowest 

bid of competitors. The analysis assumes that the project cost and lowest competitor’s 

bid do not depend on the company’s bid, and that the project cost and lowest bid are 

independent.

3.2 Solution Strategies

This VOI problem can be solved analytically as demonstrated by Howard.(6) 

Figure 2.1 represents a schematic for solving the expected value of profit under different 

information schemes. With only prior information, we evaluate the expected value of

profit for each possible bid value and choose the bid that will maximize expected profit:

2 1
E {profit | prior) = max J  J  ( b - c ) l { l  >b) f  (c) f  (l)dc dl (7)

;= o c = o
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For expected value of profit with perfect information about cost, we first evaluate the 

expected value of profit when lowest bid values are unknown, treating cost as a constant, 

and choose the bid that will maximize expected profit. We then take a weighted average 

of the expected profit over all possible values of cost:

E {profit | cost] = 1 J  ( b - c ) l ( l > b ) f ( l ) d l \ f ( c ) d c  (8)
c=0 L 1=0 J

Similarly, for perfect information about lowest bid we solve:

E  {profit | lowest} = J  imax J  ( b - c ) l ( l  > b ) f ( c ) d c \ f ( l ) d l  (9)
1=0 [  e=0 J

Under perfect information about both lowest bid and cost, we choose the bid that will 

maximize profit then take a weighted average of the expected profit over all possible

values of cost and lowest bid:

2 1
E {profit \ both} -  J  j  m a x { (b -c ) I  (l > b)} f  (c) f  (I)dc dl (10)

/=0c=0

Given the nature of this problem, the first step in solving it using either 

discretization or simulation is discretization of the company’s bid. We divide the 

continuous decision variable in increments of 0.01 from 0 to 1.99 for a total of 200 bid 

values (recognizing that a bid of 2 or greater is dominated since it will never beat the 

competitor’s bid and therefore always yields a profit of 0).

3.2.1 Discretizing the input distributions

For the discretization approach, we demonstrate what happens if we divide the 

uniform distribution of each input into 10, 32, and 100 segments of equal probability, 

where we assign a value of the mean of each segment to generate the value-probability
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pairs. Since the problem is now entirely discrete, the calculation of expected values is 

computationally straightforward and it collapses to the discrete versions of equations (7)- 

( 10):

E {profit] prior} = \ m a x \ ŷ Y J(bk - c i) I  (lj > ^ ) |  (11)
n b* [,=] ;=i J

E { profit | cost} = \ ^ m a x \ ^ ( b k - c i) l (  I. >bk) \  (12)
n ,=i bt  [  j= l  J

E{profit \ lowest} = \ ^ m a x  (bk - c i) l ( l j >bk)} (13)
n j=i ht [ l=1 J

E {profit\both} = \ ^ ^ m < c t { ( b k -c ,.)/(/,. >bk)} (14)
n  i=1 7=1 k

where bk is the k-th bid value, n is the level of discretization , c, is the i-th discretized 

value of cost, and lj is thej-th discretized value of the lowest bid. A decision tree 

program can be used to find a solution, however, due to the large number of bids, we 

script a program in S-Plus to implement the following calculation (all of the S-Plus code 

is available from the authors) [NOTE TO REVIEWERS: WE PROVIDED IT IN 

APPENDIX FOR YOU AT THE END OF THE MANUSCRIPT], With 200 bid values, 

the discretization approach requires the evaluation of 2 0 0 m 2 bid-cost-lowest bid scenarios 

for each equation (i.e., in this case 20,000, 204,800 and 20,000,000).

3.2.2 Simulating the input distributions

For the simulation approach, we use Latin Hypercube sampling in @Risk to 

generate 100 sets of 100 sample values for cost and lowest bid for a total 10,000 samples 

for each input. We then calculate output values using subsets of the samples ( m  = 100, n = 

1,000, and n = 10,000) in S-Plus. Calculation of expected values differs for the
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simulation approach since each of the n pairs of randomly sampled cost and lowest bid 

values yields a value of profit with probability equal to 1 In. For the case with only prior 

information, we first evaluate the mean of profit for each sample given a particular bid 

value then choose the bid that will maximize expected profit:

where bj is the y-th bid value, c, and /, are values of cost and lowest bid from sample 

realization i. As the equation shows, the simulation approach requires the evaluation of 

200n (i.e., 20,000, 2000,000, and 2,000,000) bid-cost-lowest bid scenarios. Similarly, the 

expected value of profit from perfect information about both cost and lowest bid is:

Finding the EVPXI is more complex since it requires taking one value as fixed and the 

other as uncertain. One solution is to use the discretization approach and solve equations 

(12) and (13) using the simulated input values as if they were discretized values, 

however, it requires the evaluation of 200n2 scenarios (i.e., 200,000,000 for 1,000 

iterations). In general, if the input distributions are probabilistically independent and the 

output value function is linear in the other uncertain input, then we can substitute the 

expected value of the input in the output value function and solve for the EVPI of the 

other input as if there is only one uncertain input.(27,35) In the case of this optimal bid 

problem, we can manipulate equation (9), the analytical solution for the profit given 

lowest bid where cost is linear in profit, to get:

1 H
E { profit | prior} = max — >bj '} (15)

E {profit | both} = — max -  c;) /  (/,. > bj )}
n bi

(16)
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|  J (b - c ) l ( l  >b) f  ( c ) d c \ f  (l)dl  = J jmax (£ -£ {< ;} ) /(/ >b) { f ( l ) d l
1=0 [  c=0 J 1=0

(17)

therefore, for the simulation approach, we evaluate the following:

E {profit | lowest} = — max {(bj -  c ) I  (lt > bj)} (18)
« ,=i hi

where c is the mean of the sampled cost values:

?  = (19)
n ,=i

Analysts must be careful to consider the relationship of an uncertain input to the output 

value function since the expected value of a function of random variables is not 

necessarily equal to the function of the expected values of the random variables.(27) For 

the expected value from perfect information about cost, we cannot substitute expected 

value of lowest bid since it is not linear in profit. By manipulating equation (8) we get:

J jmax J (b - c ) l ( l  >b ) f ( l ) d l  i/(c )< ic =  J jmax ( b - c ) E { l ( l  >b) { { f ( c ) dc
c=0 [  1=0 J c=0

(20)

where £'{/(/>£»)] is the expected value of the indicator variable, or the probability that a

particular bid will win. Therefore, for the simulation approach, we evaluate the following 

calculation:

E{profit \ cost} = - Xm ax{(^. (21)
f t  i_i i

where I} is the mean of the indicator variable for each bid:
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t ' ( h » > j )  <22>n  j

Theses substitutions are not intuitive and have been conducted incorrectly by some. For 

example, in a medical decision making VOI problem with multiple independent uncertain 

inputs,(36) the authors calculate EVPXI as the difference between EVPI from resolving all 

uncertainties, and the EVPI from substituting the expected value of x :

EVPXI = EVPI -  EVPI | x  (23)

If there were only two uncertain inputs, x  and y:

EVPI \ x =  J  {  max u ( a , x , y ) } f ( y ) d y  -m ax  J  J  u ( a , x , y ) f ( x ) f ( y ) d x d y
y e Y  y e  Y  xe  X

(24)

however, as previously derived, the utility given expected value of x  is equivalent to 

taking the expected value of the utility with respect to x,

u (a ,x ,y )=  u(a ,x ,y)  f  (x)dx  (25)
x e X

therefore, EVPI| x  is EVPYI, which implies that:

EVPXI = EVPI -  EVPYI (26)

which means that the only way for equations (23) to be true is if EVPXI and EVPYI sum 

to the EVPI from resolving both uncertainty simultaneously, which is rarely true do to the 

non additive property of EVPXI explained in the previous section.

3.3 Computational Insights

Table 2.1 provides the exact analytical solutions, estimates obtained from 

discretization of uncertain inputs into 10, 32, and 100 value-probability pairs, and

54
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estimates obtained from simulations using sample size of 100,1,000, and 10,000. The 

analytical solution to the optimal bid problem shows that the expected value of perfect 

information about lowest bid (EVPLI) and of perfect information about cost (EVPCI) do 

not sum to the EVPI that occurs with simultaneous resolution both uncertainties. 

Moreover, the analysis shows that perfect information about lowest bid is much more 

valuable to the company than perfect information than cost.

As the level of discretization increases, the approximated values become closer to 

the actual analytical values. Similarly, when we estimate expected profits from one set of 

samples, as the number of samples increase, the estimates approach the analytic solution. 

The estimate from a sample size of 10,000 matches the analytical solution very closely. 

The table shows that given a level of computational burden, measured by the number of 

scenarios that must be evaluated, the simulation approach tends to yield estimates closer 

to the analytical solution per calculation for this relatively simple problem with just two 

uncertain inputs. Better accuracy for discretization may be achieved if we use more 

sophisticated techniques for discretizing the distributions such as Gaussian quadrature, 

but this adds another dimension of computational complexity requiring the inversion of a 

nxn matrix where n is the number of value-probability pairs.(37)

Unlike discretization that yields a single value, the stochastic nature of the 

simulation approach will lead to different estimates depending on the random seed for 

sampling. We demonstrate the impact of choice of computational strategy because for 

most VOI problems, there are no exact solutions to "check" the estimates from 

simulation. Therefore, it is important for the analyst to evaluate the robustness of the 

simulation result. For example, table 2.1 compares the mean, 95% confidence interval,
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and range of estimates from ten sets of 100 samples and ten sets of 1,000 samples. As the 

number of samples in each set increases, the range of values and the 95% confidence 

intervals decrease and tend toward the analytical solution. This example also 

demonstrates that although the estimates vary, the ranges of values are closer to the 

analytical solution than the discretization approach with equivalent numbers of 

calculations.

4. Evolution of Methodology

4.1 Overview

We review in detail sixteen VOI analyses on EHRM(1126) included in the VOILA 

database.® We exclude water resource related analyses in the database that focus on 

uncertainties related to hydrogeologic inputs rather than health outcomes. Table 2.2 

summarizes the attributes of the sixteen VOI analyses included in this review grouped by 

solution method. For each paper the table indicates the type of VOI analysis, number of 

actions, number of information collection strategies, types of outcomes the analysis 

specifically valued, number of uncertain inputs, inclusion of analysis by subgroup to 

account for variability, types of probability distributions used, and whether the analysts 

used expert judgment or outputs of models as a source for input distributions. As the table 

shows, four analyses considered only the value of perfect information, while nine 

considered only the value from sample information, and three analyses considered both. 

Nine analyses considered only two action alternatives (do something or do nothing), 

while four considered multiple alternatives, and three considered optimizing the level of 

action given a continuous decision variable. Four analyses considered only the complete
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resolution of uncertainty (i.e., perfect information), and did not evaluate the value of 

specific information collection schemes. Five analyses considered two information 

collection strategies (collect something or collect nothing), while seven compared 

multiple schemes.

Since YOI analyses in EHRM tend to focus on societal level policy decisions, 

they generally consider the impact of decisions from a societal perspective. There are, 

however, examples of modeling voluntary actions such as individual homeowner’s 

decision to monitor for radon to assist in choosing a remediation strategy/18’251 Almost 

all of the analyses use a cost-benefit framework with an objective of either maximizing 

net benefits or minimizing net costs/11'21’24’261 However, three analyses minimize the cost 

of meeting a health based standard and do not explicitly value health related 

outcomes/22’23’251 As indicated in table 2.2, in valuing consequences of interventions, five 

analyses used a lump sum estimate of all consequences, while eight explicitly valued a 

premature death averted, two valued the reduction in morbidity, and one valued 

ecological benefits. In addition, less than half used a non-zero discount rate to express 

the DM’s time preference/18'21’24'261 and less than a third reported whether all monetary 

values were adjusted to a common year dollar/14’21'241

The analyses varied greatly in complexity as measured by number of uncertain 

inputs of the model and incorporation of variability. As table 2.2 shows, half of the 

analyses included just one uncertain input, with the rest ranging from 2 to as many as 14. 

None used a distribution to characterize variability, but four used subgroups. Seven used 

discrete sets of value-probability pairs, while eleven used a variety of parametric 

distributions, and one used an empirical distribution. By and large these analyses relied
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on fitting distributions to some mix of hypothetical and empirical data, however, one 

used formal expert judgment elicitation and three used outputs of a model as the source 

for characterizing uncertainty.

The group of discrete analyses represented very simple models that evaluated 

only two actions (do nothing or do something), and considered only one dichotomous 

uncertain input (carcinogenic or not). They used point estimates for prior uncertainty and 

likelihood of sample results based on hypothetical values and some empirical evidence. 

The remaining analyses tended to have larger set of actions, considered multiple sources 

of uncertainty, and primarily used parametric distributions to characterize uncertainty. 

The earlier applications (1976-1994) used the discretization of continuous inputs to solve 

the VOI problem, while more recent applications (1994-2000) shifted to simulation as the 

solution method. As the table shows, simulation applications tended to have more 

complicated decision models, considered more uncertain inputs, and used a wider range 

of distribution functions.

4.2 Modeling Decisions

The discrete analyses/11_15) focused on EVSI from toxicological testing in 

determining the carcinogenicity of chemicals. Since these papers illustrated the VOI 

framework for a generic management decision rather than informing a specific real 

decision, they considered the very limited set of only two regulatory actions (do nothing 

or do something). These analyses assumed that a hypothetical, pre-set certain control 

decision would be followed if after testing the chemical was deemed carcinogenic. Most 

of these analyses consider only two information collection strategies. Two papers by
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Lave and Omenn(1112) considered the value of regulating chemicals based on the results 

of a short-term tests for carcinogenicity compared to allowing chemicals to go 

unregulated. Lave et al.°3) evaluated the benefit of conducting rodent bioassays to no 

testing. Olson,°4) however, compared acting on prior information to conducting a 

mutagenicity test and then evaluating whether to collect bioassay information or not. 

Omenn et al.(15) went a step further and compared 13 different approaches developed by 

various researchers that combine information on structure-activity relationships, short­

term tests, sub-chronic rodent assays, and/or expert judgment for predicting the results of 

a lifetime rodent bioassay.

The analyses that discretized continuous uncertain inputs represent much more 

complex decision problems. The earliest two analyses focused on characterizing model 

uncertainty by measuring the value of perfect information, and they did not evaluate 

specific information collection schemes. North and Merkhofer°6) calculated the EVPI 

from resolving uncertainties in choosing four alternative strategies to control pollution 

emissions for three representative power plant types. Finkel and Evans(17) described a 

VOI framework for environmental management and calculated the EVPI and EVPXI for 

dose of a hypothetical risk management problem with three alternatives.

The next three analyses, on the other hand, evaluated specific information 

gathering strategies. Evans et al.°8) modeled homeowner’s EVSXI from monitoring 

radon in the home in choosing one of five remediation strategies (where two of the five 

are always dominated and were not included in the final calculation). Reichard and 

Evans0 9) considered the EVPI, EVPXI and EVSXI of four options for monitoring 

groundwater for arsenic in a decision to install point of use drinking water filtration
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system or not. Taylor et al.(20), assessed the EVPI and EVSI of the animal bioassay’s 

ability to determine magnitude of cancer causing potential rather than just whether a 

chemical is carcinogenic or not. The choice of actions used was simplistic (act or not), 

however, to provide general insights about the three strategies for collecting toxicological 

information: collect none, use only subchronic bioassay, or conduct additional long-term 

bioassay.

The last analysis in this group evaluated the benefit of a two-stage approach to 

pollution control, which allowed the incorporation of information collected from the first 

stage in the decision at the second stage. Chao et al.(21) calculated EVSI from waiting for 

more information to choose the optimal levels of control of both nitrogen oxides and 

volatile organic compounds to reduce tropospheric ozone. The level of emission 

reduction was divided into five levels for each pollutant (0%, 20%, 40%, 60%, 80%) for 

each stage, yielding 625 action scenarios.

The analyses that used simulation include two that considered only two action 

alternatives, and two others that do not consider specific information collections 

strategies. Dakins et al.(22’23) evaluated the value of resolving uncertainty about PCB 

contamination in fish to assist in choosing the optimal level of remediation of 

contaminated sediments in New Bedford Harbor, Massachusetts. Dakins et al.<22) 

evaluated EVPI for the model and Dakins et al.(23) conducted a preposterior analysis to 

evaluate the EVSI from sampling two, five, and ten randomly selected flounder from 

New Bedford Harbor. Thompson and Evans(24) calculated the EVPI and EVPXI from 

collecting national exposure information about perchloroethylene (perc) used in dry 

cleaning. Unlike other applications, this analysis compared regulating perc exposure at
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three different levels of decision making: individual dry cleaning facilities, by particular 

dry cleaning machine category (defined by type and size), and by particular machine 

type, with several control options for each type of machine (a total of eleven).

The remaining two analyses, in contrast, focused on optimal information 

collection, and simple choice of action or no action. Lin et al.(25) evaluated the EVSI 

from measuring radon concentrations in private homes to assist in the decision to take 

remediation action or not, and compared four different policies for monitoring strategies 

at the national level. Bartell et al.(26) evaluated the EVSI from a screening program to 

prevent chronic beryllium disease (CBD) from occupational exposure. The analysis 

evaluates the value from resolving the uncertainty in the presence or absence of a genetic 

polymorphism that makes an individual susceptibility to CBD. They compared three 

different strategies for screening to doing nothing, where a "positive" screening result 

leads to an intervention that would lead to either early treatment of the disease or 

prevention of exposure to beryllium.

4.3 Modeling and Valuing Outcomes

Table 2.3 summarizes the health outcomes evaluated by the analyses and values 

used to calculate VOI. As the table shows, the discrete analyses used a simple cost- 

benefit framework, and did not have sophisticated measures of outcomes. Most of the 

discrete analyses*11'13’15) evaluated a lump sum for two consequences: a regulatory false 

positive is assumed to impose a net cost to society from unnecessarily regulating a non­

carcinogen ($1 million), while a regulatory false negative is assumed to impose a net cost 

to society from not regulating a carcinogen ($10 million). The same baseline values are
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used in all of these analyses although the earliest was published in 1986 and the latest in 

1995. None of these analyses reported a discount rate or whether all monetary values 

were adjusted to a common year dollar. In contrast, 01son(14) calculated the number of 

cases of cancer from a hypothetical unregulated carcinogen and valued them at $2 million 

(1986 dollars) using a discount rate of zero.

The papers that discretized continuous uncertain inputs tended to develop much 

more sophisticated cost-benefit analyses and have more refined measures of outcomes. 

North and Merkhofer(16) identified and valued a variety of health endpoints from air 

pollution including premature death ($30,000), aggravation of heat and lung disease 

symptoms ($20/day), asthma attack ($ 10/case), a child’s lower respiratory disease 

($75/case), and chronic respiratory disease ($250/case). They also estimated the cost of 

ecological damage ($0,015 per pound of sulfur emitted), and esthetic effects ($0,034 per 

pound of sulfur emissions), but did not report whether all monetary values were adjusted 

to a common year dollar or a discount rate.

Four analyses(17'20) modeled dose-response and exposure to estimate the risk of 

developing cancer from various carcinogens and used a nominal value of life ranging 

from $1 million to $10 million (with an even wider range in sensitivity analysis). Since 

the earliest analysis had the smallest baseline value and the latest had the largest, the 

difference in real value is likely even greater, but we cannot calculate it exactly since 

none of these three analyses reported what year dollar the values represented. The 

discount rate in these analyses ranged from 3% to 5%. Chao et al.(21) did not specifically 

measure a health end point, but instead estimated a lump sum value for the impact of
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ozone concentration. They estimated damage to health from ozone at $10 billion per year 

per ppm if peak ozone concentration exceeded 0.12 ppm (in 1989 dollars).

The analyses that used simulation as a solution strategy took much more varied 

approaches to modeling outcomes. Two analyses(24,26) used a risk assessment approach to 

evaluate the net societal costs from health damages caused by exposure to perc and CBD, 

respectively. Thompson and Evans(24) valued each premature death from cancer at $3 

million in 1989 dollars, with a range of $1 million to $10 million in sensitivity analyses. 

They used a consistent discount rate of 5% in the base case analysis to account for time 

preference. Bartell et al.(26) valued a case of CBD prevented using four different 

estimates ranging from a low estimate of $12,200 that considered only future medical 

costs averted discounted at 7%, to a high number of $16,300,000, which is a high 

estimate of the value of a statistical life ignoring disease latencies and discounting (no 

year dollar given).

Taking a slightly different approach, Lin et al.(25) modeled risks of cancer from 

radon exposure, but rather than use a specific value per life to drive the analysis, they 

used an action level as the benchmark assuming that above the set level of exposure 

remediation should occur. The action level was predetermined based on household 

composition, a household’s risk preference, and WTP for risk reduction. The objective 

focused on minimizing total cost, which included residual risk after remediation. In the 

base case analysis, the authors chose an action level established by the U.S. EPA, an 

annual living area average concentration of 4 pCi/L. Assuming a household consisting of 

the average number of male and female smokers and never smokers in the United States, 

the action level implied a value of $210,000 per life. They used a discount rate of 5% to
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account for time preference, but did not report whether all monetary values were adjusted 

to a common year dollar.

In contrast the objective of Dakins et al.(22,23) focused on choosing an optimal 

level of dredging to minimize remediation costs while meeting a health-based standard 

for PCB concentration in fish set by the FDA. The analysis, which evaluated the cost of 

under remediation in 1985 dollars and use a 0% discount rate, assumed that the correct 

level of remediation will be known in the future and assumed no residual health risk if the 

standard is met. If insufficient remediation occurred, then additional remediation to meet 

the standard must be completed and would require additional penalties such as the fishery 

remaining closed for longer time and additional costs of remobilizing research and 

remediation efforts. This did not however account for health risks from sub-optimal 

dredging or any health risks that would exist either during or post-remediation. .

4.4 Characterization o f Uncertainty and Variability

The discrete analyses represented simple models for the value of resolving 

uncertainty about a single dichotomous input -  whether a chemical is carcinogenic or not 

-  and used hypothetical point estimates of prior probability of carcinogenicity and point 

estimates for the likelihood of test results based on empirical data. The papers by Lave 

and Omenn(l l,12) assumed a range of point estimates for the sensitivity and specificity of 

rodent bioassays in predicting human carcinogens. Lave et al.(13) assumed point estimates 

for both sensitivity and specificity based on empirical evidence for each type of testing. 

01son(14) also used a hypothetical prior but disaggregated likelihood into the four 

categories of possible bioassay results established by the U.S. National Toxicology
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Program (NTP), and assumed discrete probability values based on available empirical 

evidence. Omenn et al.(15) compared 13 approaches for predicting results of a life-time 

rodent bioassay (carcinogenic or not) developed through the Carcinogenic Prediction 

Challenge sponsored by the NTP. They used a hypothetical point estimate of prior 

probability and the sensitivity and specificity values implied by the strategies for 44 

chemicals.

The analyses that used a discretization approach tended to include only a couple 

of continuous uncertain inputs, and used lognormal distributions for prior distributions 

and/or likelihood functions that allowed analytical solutions for the product of inputs and 

posterior distributions. Only a couple of analyses explicitly addressed variability. The 

EVPI analysis by North and Merkhofer(16) evaluated the value of simultaneously 

resolving two uncertainties in the model: how a unit of emission translates to ambient 

concentration and the total health cost per unit increase in suspended sulfate 

concentration, which were assumed to be independent in the analysis. The 

characterizations were based on the authors’ subjective judgment on extreme values, 

which were modeled to represent the 5th and 95th percentile points on the cumulative 

probability distribution. They provided a sketch of the cumulative distribution for the 

ambient sulfate concentration increment and assumed a lognormal distribution for the 

total health cost. To account for variability in the total health cost on local population 

density and fuel burning technology, they solved the optimization problem for three types 

of power plants: an existing coal plant in a rural area, a new construction in a rural area, 

and an oil burning plant (originally designed for coal) in an urban east coast location.
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Finkel and Evans(17) modeled uncertainty about the health risk from a contaminant 

as the product of two components: dose and exposure. They assumed a lognormal 

distribution for both components and consequently the uncertainty about risk was also 

lognormal. They used hypothetical parameter values to illustrate how EVPI varied with 

different prior beliefs about the uncertainty in risk. Evans et al.(18) used the approach 

established by Finkel and Evans(17) to characterize the uncertainty in exposure to radon in 

individual homes and its potency in causing cancer. They developed lognormal 

distributions for both components using formal expert judgment elicitation. The expert 

set parameter value for the prior distribution for exposure based on previously available 

monitoring information (e.g., regional monitoring data, monitoring in a neighbor’s home), 

and accounted for variability in radon exposure by setting different parameter values 

based on region of the country and characteristic of the home. They used a lognormal 

distribution to characterize the likelihood of observing a given a radon measurement. A 

different expert was asked to develop parameters for a lognormal distribution of excess 

relative risk of cancer to the general population based on epidemiological data available 

for occupational exposure of radon to miners. They included additional variability in 

potential benefits from monitoring by analyzing the VOI to household of four 

representative demographic compositions.

Reichard and Evans(19) used a similar approach and include two uncertain inputs 

characterized by a lognormal distribution: the potency of arsenic in causing cancer and 

the exposure to arsenic in well water. They assumed a lognormal distribution for 

potency, and fit a multistage dose response model to epidemiological data to estimate the 

geometric standard deviation of potency. For exposure to arsenic, however, the authors
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used simulation to propagate uncertainty in a hydrogeologic model with five uncertain 

inputs characterized by uniform distributions, but rather than use the output of the 

simulation to characterize the uncertainty in exposure they fit a lognormal distribution for 

use in subsequent analysis. They also used an empirically based likelihood function to 

characterize the error in concentration measurement.

Taylor et al.,(20) unlike the other analyses in this group, included only one 

uncertain input in their model: carcinogenic potency of a chemical. The prior distribution 

of potency was based on the results of the first 213 NTP mouse bioassays. Since only 

half of the chemicals were determined to have positive results, for the base case analysis, 

the distribution is characterized as the sum of a delta function at zero potency with a 

probability mass of 50%, and a lognormal distribution fit to the statistically significant 

test results and normalized so that the entire distribution integrates to unity. They 

modeled likelihood of test results as a Binomial distribution and created a matrix of 

values to solve for the values of the posterior distribution. Chao et al.(21) expressed 

uncertainty in current emission rates of nitrogen oxides and volatile organic compounds 

as uniform distributions, and uncertainty in the photochemical model expressed as a 

lognormal distribution. Distributions and parameter values were chosen by the authors to 

represent their judgment on the best available information. The analysis models 

information available after the first stage as a sampling outcome with a hypothetical point 

estimate for accuracy.

Analyses that use simulation as solution strategies tended to include a number of 

continuous uncertain inputs and used a variety of parametric distributions to characterize 

uncertainty. Two of the analyses explicitly included variability in the analysis. The
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EVPI analysis in Dakins et al.(22) evaluated simultaneously resolving all six uncertain 

inputs in the model such as PCB concentration in the sediment, average water 

temperature, and growth rate of flounder. They described each input by a normal, 

triangle, or uniform distribution to reflect the best available information for New Bedford 

Harbor collected for a previous food chain model (input distributions listed in table 2 of 

Ref. 22). Dakins et al.(23) modeled the prior distribution for body burden by simulating 

50 replications using the model established in Dakins et al.(22) The only uncertain input 

used in this analysis was the PCB body burden of flounder, although it was derived from 

6 uncertain inputs in a previous analysis. They conducted a preposterior analysis to 

evaluate the EVSI from sampling two, five, and ten randomly selected flounder from 

New Bedford Harbor. They assumed that the likelihood of observing a particular set of 

body burden measurements was normally distributed given a true value of total body 

burden. For the case of sampling five flounders, they repeated the simulation five times 

with different random seeds to check the robustness of the calculation using simulation 

results, and are the only ones to report multiple simulation results in a publication.

Thompson and Evans(24) considered fourteen uncertain inputs such as potency of 

perc in causing cancer, fraction of inhaled perc metabolized, perc’s lifetime in the 

atmosphere, and uncertainty in predictions of a Gaussian dispersion model. They 

characterized the inputs using lognormal, triangular, or uniform distributions to best 

reflect the empirical evidence (references are noted on the list of input distribution in 

table 4 of reference(24). The authors also used an empirical distribution to characterize 

perc’s potency developed for a previously published risk assessment. Two inputs, fraction 

of time spent at a dry cleaning facility by consumers and workers, were developed based
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on informal discussions with local dry cleaners. They considered variability by modeling 

risks to four distinct populations: dry cleaning workers, families of workers, consumers 

of dry cleaning services, and the general public from ambient exposure. Unlike all of the 

other analyses that use simulation, this paper includes an EVPXI analysis to evaluate the 

relative importance of the different sources of uncertainty. In this case, the authors found 

that the individual EVPXIs sum to a number larger than the overall EVPI (could you 

infer that this would happen in the paper by Finkel and Evans?).

In the analysis by Lin et al.,(25) the sole uncertain input in the model was the 

concentration of radon. The prior distribution was characterized by a lognormal 

distribution based on a hierarchical linear regression model that fit county level 

explanatory variables to radon measurements, yielding parameter values that varied by 

county and housing type. Additionally, the authors accounted for variability in risk of 

cancer based on gender and smoking status. For the base case, the authors assumed that 

long term monitoring produces an unbiased, lognormally distributed estimate of 

concentration such that the posterior distribution of true concentration given the 

measurement would also distribution lognormally. One commentator applauded the 

analysis, however added "given the power of modem MCM techniques I was surprised 

that the model components...were essentially confined to normal distributions."(38)

Bartell et al.(26) evaluated resolving the uncertainty in the presence or absence of a 

genetic polymorphism that makes an individual susceptible to CBD using a probabilistic 

risk assessment. The model included seven uncertain inputs such as sensitivity and 

specificity of the genetic screening test, cost of testing, cost of genetic counseling, and 

risk reduction efficacy from interventions. These inputs were characterized by beta,
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triangular and uniform distributions to reflect the analysts’best judgment of available 

information (input distributions listed in table 1 of reference(26) where they also note their 

level of confidence about the characterization). They used a point estimate for the prior 

prevalence of susceptible individuals, and this value is updated based on information 

collected from three screening strategies with uncertain sensitivity and specificity to 

estimate the posterior probability of genetic polymorphism.

5. Remaining Analytical Challenges

The VOI analyses in EHRM decisions to date represent primarily demonstrations 

of the usefulness of approaching a management problem using a VOI framework. While 

simulation appears to be allowing analysts to solve more complicated and realistic 

problems that may be useful in real decision making contexts, important barriers remain. 

These include the lack of guidance from EPA and others on criteria for standardizing 

EHRM risk and decision analyses, the lack of consensus on values to use for health 

outcomes, the lack of default probability distributions for frequently used inputs, and 

inexperience of risk managers and communicators with using probabilistic risk results.<27) 

In addition, it remains analytically challenging to model decisions that use all available 

information, deal with non-linear inputs, and include correlation in input distributions and 

dependence in information collected.

For the societal perspective, analysts need to evaluate all relevant decision 

contexts where information would be useful. VOI can inaccurately estimate the true 

societal value of perfect information if positive or negative externalities may arise from 

the information collection not explicitly modeled in the decision. For example,
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toxicological information about one substance may be used for the specific regulatory 

decision about controlling that substance, but it may also be used in models to predict 

toxicity of substances with similar structures. While some analysts have discussed this 

issue, no progress has been made on developing strategies to deal with it in VOI analyses.

With respect to modeling, none of the previous analyses have addressed non- 

linearity in risk models. Though cancer risks are generally modeled as a linear function 

of dose, current procedures for non-cancer risk assessment require a modeling a threshold 

under which no detrimental effects will occur. As discussed previously, when there are 

inputs that are not linear in the output value function, EVPXI cannot be calculated with 

simulation using a simple substitution of expected value of that input.

Another challenge is how to value non-monetary outcomes. Though economists 

have attempted to calculate a societal value for averting premature morbidity and 

mortality,{39,40) no widely agreed value exists. Not surprisingly, the values analysts 

choose to use vary widely, which is problematic since the choice of value of life can 

dramatically impact the VOI results.(24) In addition, empirical evidence from both 

revealed preference and stated preference studies show that factors such as age, income, 

baseline mortality risk, and latency of the risk influence the value of statistical life (VSL), 

but only income shows a predictable, monotonic relationship.(41) Similarly, no consensus 

exists on what discount rate to use to reflect societal time preference, an important model 

input for decisions related to diseases that may have long latencies, and latency in cancer 

remains a very difficult factor to include in risk models.

Collecting additional information may lead to surprises that show some basic 

assumptions may be incorrect, such as observing input values outside the bounds of prior
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belief in those cases where the model used overconfident priors.(42,43) Given very limited 

information, the uniform and triangle distributions are maximum entropy distributions 

and may provide the best fit to existing information. However, collecting information 

about the input may lead to observations of values outside the bounds of the uniform or 

triangle distribution. In addition, prior distributions based on expert judgment may be 

overly narrow due to tendency of both lay people and experts to be overconfident in their 

knowledge.(43) Therefore, choice of prior distribution based only on fitting distributions 

to observed data or expert judgment may discount "surprises" that can be of great value 

from information collection,(42,43) and may not be desirable from VOI standpoint.

None of the EHRM analyses include correlated uncertain input distributions or 

assess the impact of dependence in information collected. Modeling correlated input 

distributions requires developing joint distributions and conditional probability 

distributions for EVPXI analyses, which complicates the calculation but could have an 

important impact on VOI. For example, positive dependence among sources may 

significantly reduce the value of information. Previous research suggests "it might be 

important to seek out information sources that are believed not to be highly correlated 

with each other or with the prior information...trading some precision for reduced 

dependence can be advantageous. "(44)

As the case of mandatory passenger side airbags in motor vehicles show, 

significant consequences derive from ignoring variability in a decision analysis.(45) In 

addition, since true variability cannot be reduced with more information, a distribution 

that combines uncertainty and variability is not appropriate for VOI analyses and analysts 

must use care to treat the uncertainty and variability appropriately in the context of the
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desired characterization of risk/46, ThomPson’1996#ll8) For example, a decision where a risk 

manager seeks to control the total number of cases of a disease, the variability in the 

population can be collapsed into the uncertainty in the model and that distribution should 

represent the uncertainty about the mean (i.e., the standard error), not the standard 

deviation of individuals in the population.(32)

The review suggests that analysts may have not sufficiently dealt with the issue of 

potential errors in VOI analyses stemming from numerical approximation methods. Only 

one analysis, Dakins et al.,(23) reports multiple simulation results to show the robustness 

of the VOI estimate, although Thompson and Evans(24) reported results that represented 

the mean of 10 simulations of 10,000 iterations each. As computational capabilities of 

personal computers increase, even large simulations are becoming much faster and 

cheaper than ever before such that for many problems the slowest part of the process is 

the time required to set up the model, not the time required to run it, which is trivial by 

comparison.

6. Conclusion

Rigorous value of information analysis is not required for all opportunities to 

collect information to improve EHRM decisions. However, complex risk management 

decisions as well as efforts to characterize uncertainty in risk may greatly benefit from 

formal VOI analyses. The National Research Council’s Committee on Risk 

Characterization stated that: "Risk characterization should be a decision-driven activity, 

directed towards informing choices and solving problems"(47:155) and recognizes that 

"value-of-information analysis can be of considerable use in the analytic-deliberative
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process."(47;111) Our analysis shows how advances in computing tools have allowed 

analysts to tackle of problems with greater complexity, but "real" applications are still 

lacking.

In the field of clinical decision making, the U.S. Public Health Service convened

in 1993 the Panel on Cost-Effectiveness in Health and Medicine with the goal of

standardizing methods used to estimate cost-effectiveness of medical interventions to

improve the quality of the analyses and make them more comparable.(48) However,

similar efforts have not appeared in the field of environmental health. An EHRM

equivalent to the panel on cost effectiveness might be very helpful to standardize

analytical methods and reporting requirements for value of information analyses as the

field continues to evolve.

As with all analyses, the most important question may be deciding when to take

the step of performing a formal VOI analysis. While we believe that more such analyses

will be justified as decisions become more complex, we believe that Howard may have

captured this best:

[0]ne of the arts of the decision analyst is the art of knowing how much 
and what kind of decision analysis to do. The degree of analysis can 
range from making simple lists to constructing giant interactive computer 
models. To be effective decision analysis must be "appropriate": the 
extent of the analysis must be suitable to the means and ends of the 
decision-maker.(49;22)

Part of making sure that the means and ends of the decision-maker are met depends on 

increased dialogue between risk assessors, risk managers, and decision analysts about the 

opportunities presented by formal VOI analysis, and this paper shows that the literature 

contains a number of examples that may help make the case.
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Figure 2.1: Schematic of the optimal bid problem
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Table 2.1: Solutions to the optimal bid problem in Howard (1966)

Scenarios
(000s) Prior

Expected Profit 
Cost Lowest Both Cost

EVPI
Lowest Both

Analytical - 0.281 0.292 0.563 0.583 0.010 0.281 0.302
Discretize

iis 20 0.316 0.325 0.553 0.575 0.009 0.237 0.259
n = 32 204.8 0.293 0.302 0.559 0.579 0.009 0.266 0.287
n = 100 2,000 0.281 0.292 0.555 0.576 0.010 0.274 0.295

Simulate (1 set)
n - 1 0 0 20 0.264 0.295 0.558 0.569 0.031 0.294 0.304
n = 1,000 200 0.280 0.293 0.559 0.575 0.013 0.279 0.295
n = 10,000 2,000 0.282 0.292 0.559 0.580 0.010 0.277 0.299

Simulate (10 sets)
n - 1 0 0

M ean
200

0.286 0.295 0.559 0.574 0.009 0.272 0.288
95% C.I. 0.274-0.298 0.295-0.295 0.558-0.559 0.567-0.581 -0.003-0.021 0.260-0.285 0.278-0.297

R ange 0.264-0.319 0.295-0.296 0.558-0.560 0.558-0.589 -0.024-0.031 0.240-0.294 0.262-0.304
n = 1,000

M ean
2,000

0.283 0.293 0.559 0.580 0.010 0.276 0.297
95% C.I. 0.281-0.285 0.293-0.293 0.559-0.559 0.578-0.583 0.007-0.012 0.273-0.278 0.298-0.298
Range 0.280-0.289 0.292-0.293 0.558-0.559 0.575-0.585 0.003-0.013 0.269-0.279 0.294-0.299
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Table 2.2: Attributes of EHRM VOI analyses (grouped by solution method)

D iscrete
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X X X

X
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X

Decision model
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2 2 2 2 2 
2 2 2 3 2

4 3 5 2 2 00 
0 0 2 4 3 2

oo oo 11 2 2 
0 4 0 4 4

Valuation of outcomes
Lump sum
Premature death averted 
Morbidity prevented 
Ecological damage

X X X  X 

X

X

X X X X X

X

X

X X 

X

Model inputs
No of uncertain inputs 
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1 1 1 1 1 2 2 2 2 1 3
X X

6 1 14 1 7
X X

Probability distributions
Discrete set
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Lognormal
Normal
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Uniform
Empirical
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X X X X X X

X

X X X X X X 
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X X

X

X
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Table 2.3: Valuation of outcomes in EHRM VOI analyses (grouped by solution method)
Baseline Low High Outcome Year

Dollar
Discount

Rate
Discrete

Lave and Omenn(11) $10 million - - Lump sum per unregulated carcinogen NR NR
Lave and Omenn(12) $10 million - - Lump sum per unregulated carcinogen NR NR
Lave et al.(13) $10 million - - Lump sum per unregulated carcinogen NR NR
01son(14) $2 million - - Cancer death (generic) 1986 0%
Omenn et al.(15) $10 million - - Lump sum per unregulated carcinogen NR NR

Discretized Continuous
North and Merkhofer(16) $30,000 “ - Premature death of chronically ill from air 

pollution
NR NR

Finkel and Evans(17) $1 million $250,000 $4 million Cancer death (generic) NR NR
Evans et al.(I8) $3 million $1 million $10 million Cancer death from radon NR 3%
Reichard and Evans(19) $1 million $50,000 $10 million Cancer death from arsenic NR 5%
Taylor et al.(20) $10 million - - Cancer death (generic) NR 5%
Chao et al.(21) $1 billion Lump sum per ppm of ozone if peak 

concentration exceeds 0.12 ppm
1989 5%

Simulation
Dakins et al.(22) - - - No health 1985 0%
Dakins et al.(23) - - - No health 1985 0%
Thompson and Evans(24) $3 million $1 million $10 million Cancer death from perc 1989 5%
Lin et al.(25)* $210,000 - - Cancer death from radon NR 5%
Bartell et al.(26) - $12,200 $16 million Illness and death from CBD NR 0%-7%

NR = Note reported, * Implied by the standard chosen
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Appendix

A l. S-Plus Code for Optimal Bid VOI Problem

A l . l  D iscretization

# Adjust these values
increment <- 0.01 # increment of bids
n <- 100 # level of discretization of cost and lowest bid
init <- -666 # initial value

# Assign bid values
m <- 2/increment # number of bids 
bid <- seq(0, by=increment, length=m)

# Discretize cost and lowest bid values
cost <- matrix(seq(l/n/2, by=l/n, length=n), ncol=l) 
lowest <- matrix(seq(1/n, by=2/n, length=n), nrow=l)

# Initialize max EV{profit} for each cost value(nxl matrix)
E.prior <- matrix(rep(init, m), ncol=l)

# Initialize max EV{profit} for each lowest bid value(nxl matrix)
E.cost <- matrix(rep(init, n), ncol=l)

# Initialize EV{profit} for each bid (mxl matrix)
E.lowest <- matrix(rep(init, n), nrow=l)

# Initialize max EV{profit} for each cost-lowest bid combination (nxn matrix) 
E.both <- matrix(rep(init, n*n), nrow=n)

# Define Function "Max Value"; compare two values and return the larger value
Max.Value <- function (new, old){ 
ifelse(new > old, new, old)

}

# Repeat for each bid value 
for (i in 1 :m){
# Calculate profit for cost-lowest bid combination given a bid 

profit <- (bid[i]-cost)%*%ifelse(lowest - bid[i] > 0.00001, 1, 0)

# Calculate expected profit for this bid 
E.prior[i] <- mean(profit)

# Replace value if the mean profit given cost is greater 
E.cost <- Max.Value(profit%*%rep(1,n)/n, E.cost)

# Replace value if the mean profit given lowest bid is greater 
E.lowest <- Max.Value(rep(1,n)%*%profit/n, E.lowest)

# Replace value if the profit from this bid is greater 
E.both <- Max.Value(profit, E.both)

}

# Report Values 
max(E.prior) 
mean(E.cost) 
mean(E.lowest) 
mean(E.both)
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A1.2 Simulation

# Adjust these values
increment <- 0.01 # increment of bids 
n <- 1000 # number of samples per set
set < - 1 0  # number of sets
init <- -666 # initial value

# Assign bid values
m <- 2/increment # number of bids
bid <- matrix(seq(0, by=increment, length=m), nrow=l)

# Upload input values from simulation in @Risk 
cost <- scan("D:\\Data\\cost.txt")
lowest <- scan("D:\\Data\\lowest.txt")

# Distribute samples into matrix of n-rows 
cost <- matrix(cost, nrow=n, byrow=T) 
lowest <- matrix(lowest, nrow=n, byrow=T)

# Initialize EV{profit} from prior info for each set 
EV.prior <- rep(init, set)

# Initialize EV{profit} from cost info for each set 
EV.cost <-rep(init, set)

# Initialize EV{profit} from lowest bid info for each set 
EV.lowest <-rep(init, set)

# Initialize EV{profit} from both info for each set 
EV.both <-rep(init, set)

# column of m ones 
m.ones <- rep(l,m)

# column of n ones 
n.ones <- rep(l,n)

# Repeat for each set 
for (i in 1: set){
# Initialize indicator of whether bid wins (nxm matrix) 

win <- matrix(rep(init, n*m), nrow=n)
# Initialize profit for each bid and iteration (nxm matrix) 

profit <- matrix(rep(init, n*m), nrow=n)
# Initialize profit given perfect cost information (nxm matrix) 

profit.c <- matrix(rep(init, n*m), nrow=n)
# Initialize profit given perfect lowest bid information (nxm matrix) 

profit.1 <- matrix(rep(init, n*m), nrow=n)
# Initialize profit given prior information for each bid (m values) 

p.prior <- rep(init,m)
# Initialize profit given cost information for each iteration (n values) 

p.cost <- rep(init,n)
# Initialize profit given lowest bid for each iteration (n values) 

p .lowest <- rep(init,n)
# Initialize profit given both for each iteration (n values) 

p.both <- rep(init,n)

# Indicate whether bid wins for each bid and iteration 
win <- ifelse(n.ones%*%bid < lowest[,i]%*%t(m.ones),1,0)

# Expected value of indicator for each bid (i.e., probability of win) 
m.win <- t(n.ones)%*%win/n

# Profit for each bid and iteration
profit <- (n.ones%*%bid - cost[,i]%*%t(m.ones))*win
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#  Profit for each bid and iteration given probability of winning 
profit.c <- (n.ones%*%bid - cost[,i]%*%t(m.ones))*(n.ones%*%m.win)

# Profit for each bid and iteration given expected value of cost 
profit.1 <- (n.ones%*%bid - mean(cost[,i]))*win

# Profit for each bid
p.prior <- t(n.ones)%*%profit/n

# Maximum EV{profit} for each iteration 
for (j in 1 :n){
p.cost [j] <- max(profit.c [j ,]) 
p.lowest[j] <- max(profit.1[j ,]) 
p.both[j] <- max(profit[j ,])
}

# EV{profit} with prior information 
EV.prior[i] <- max(p.prior)

# EV{profit} with perfect cost information 
EV.cost[i]<-mean(p.cost)

# EV{profit} with perfect lowest bid information 
EV.lowest[i]<-mean(p.lowest)

# EV{profit} with perfect information about both 
EV.both[i]<-mean(p.both)

}

# Calculate EVPI
EVPI.cost <- EV.cost-EV.prior 
EVPI.lowest <- EV.lowest-EV.prior 
EVPI.both <- EV.both-EV.prior

# Store values for all sets in one data set
EV<-cbind(EV.prior, EV.cost, EV.lowest, EV.both, EVPI.cost, EVPI.lowest, 

EVPI.both)

# Define Function "Summary.Stats"; calculate summary stats including 95% Cl 
Summary.Stats <- function(data){
menuDescribe(data, print.p=F, conf.lim.mean.p = T, conf.level.mean = 0.95) 
}

# Calculate and store summary statistics 
Stat.EV <- Summary.Stats(EV)
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A2. Annotated Bibliography of VOI Applications in EHRM

Bartell et al. (2000)(26) evaluate the value of a screening program to prevent chronic 

beryllium disease (CBD) from occupational exposure. The analysis evaluates the value 

from resolving the uncertainty in the presence or absence of a genetic polymorphism that 

makes an individual susceptibility to CBD using a probabilistic risk assessment. They 

use a point estimate for the prior prevalence of susceptible individuals and seven 

uncertain inputs characterized by various parametric distributions such as sensitivity and 

specificity of the genetic screening test, and evaluate expected values using a simulation 

approach. They compare three different strategies for screening to doing nothing, where 

a "positive" screening result leads to an intervention that will lead to either early 

treatment of the disease or prevention of exposure to beryllium. A case of CBD 

prevented is valued at four different values, ranging from a low estimate of $12,200 

which considers only future medical costs averted discounted at 7%, to a high number of 

$16,300,000 which is a high estimate of the value of a statistical life with no discounting 

(no year dollar given). The lower the value of CBD avoided, the higher the occupational 

prevalence of CBD susceptibility must be to justify any screening program. Their 

analysis shows for value of CBD avoidance greater than $1,450,000, the EVSI net of 

screening cost for all three options for screening is positive at current estimates of 

occupational prevalence.

Chao et al. (1994)(21) compare an one stage strategy to a two stage strategy that 

incorporates information learned in the first stage to calculate the "value of flexibility" in 

a hypothetical management decision to control tropospheric ozone. The decision is 

choosing the optimal levels of control of both nitrogen oxides and volatile organic 

compounds to minimize total societal cost where ozone is estimated to have an impact of 

$10 billion per year per ppm if peak ozone concentration exceeds .12 ppm; health risk is 

not modeled explicitly. The uncertainty in current emission rates are expressed as 

uniform distributions, and uncertainty in the photochemical model expressed as a 

lognormal distribution. The analysis models information available after the first stage as
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a sampling outcome with assumed accuracy, but does not consider the cost of collecting 

such information. The authors used a decision tree to solve the problem, for each stage 

discretizing the emission reduction decisions into five choices each, the emission 

reduction to three branches each, and model error into five branches thereby evaluating a 

total of 1,265,625 scenarios. Reduction in cost from incorporating the information 

gained in the first stage in the two stage policy, or the EVSI, is $9 million (no year dollar 

given).

Dakins et al. (1994)(22) evaluate the remediation of PCB contaminated sediments in New 

Bedford Harbor, Massachusetts. Unlike the previous studies that explicitly value health 

consequences, the objective of this policy decision is to choose an optimal level of 

dredging which will minimizes remediation cost while meeting a health based standard 

for PCB concentration in fish. The analysis assumes that the correct level of remediation 

will be known in the future, and if under remediation has occurred, additional 

remediation to meet the standard must be completed and would incur additional penalties 

such as the fishery remaining closed for longer and additional cost of remobilizing 

research and remediation efforts. The analysis includes six uncertain inputs such as PCB 

concentration in the sediment, average water temperature, and growth rate of flounder 

each described by a parametric distribution such as the normal, triangle, and uniform. It 

assumed independence of the uncertain inputs, and used Monte Carlo simulation using 

Latin hypercube sampling to predict the total PCB body burden in flounders. They 

estimate that EVPI, from resolving all uncertainties in the model, is $16 million in 1985 

dollars.

Dakins et al. (1996)(23) expand on the previous analysis by calculating the EVSI from 

sampling founder to measure total PCB body burden. They model the prior distribution 

for body burden by simulating 50 replications using the model established in Dakins et al.

(1994)(22). They conduct a preposterior analysis to evaluate the EVSI from sampling two, 

five, and ten randomly selected flounder from New Bedford Harbor. They assume that 

the likelihood of observing a particular set of body burden measurements is normally 

distributed given a true value of total body burden. They estimate that the gross EVSI
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(i.e., not considering information collection costs) is $9.4 million for the two sample 

scheme, $1.4 million for the five sample scheme and $11.5 million for the ten sample 

scheme in 1985 dollars. They also test the robustness of sampling just 50 values to 

establish the prior distribution by repeating the calculation five times using different 

random seeds and find that the expected losses vary within a range of $800,000, which 

they note is small relative to the overall expected loss.

Evans et al. (1988)(18) use the framework laid out in Finkel and Evans (1987)(17) to model 

individual homeowner’s decision to monitor for radon in their homes to assist in choosing 

one of five remediation actions. They formally elicit expert judgment to characterize the 

uncertainty surrounding exposure and potency of radon in causing cancer. They also 

account variability in radon exposure by setting different distributions based on region of 

the country and characteristic of the home, and additional variability in potential benefits 

from monitoring by analyzing the VOI to household of four representative demographic 

compositions. Since monitoring reduces but not eliminate uncertainty about exposure, 

they analyze the EVSXI for exposure for three different levels of prior information about 

radon concentration available to the household: no data available, regional data available, 

and data from a neighbor with a similar home. Valuing a life at $3 million and using a 

real discount rate of 3% they find that even at a seemingly insignificant monitoring cost 

of $50, there are many households that would not benefit from monitoring since the gross 

EVSXI in present value is less than $50.

Finkel and Evans (1987)(17) note the lack of application of VOI methods to environmental 

problems, and describe the VOI framework for environmental management and illustrate 

the methods with a hypothetical risk management problem. Their approach is rooted in 

risk analysis methods and models uncertainty about the health risk from a contaminant, 

which is the product of two components: dose and exposure. Both components are 

modeled as lognormal distributions, therefore the uncertainty about risk is also 

lognormal. They analyze three alternatives for controlling a hypothetical contaminant, 

and value each premature death at $1 million. They evaluate how EVPI and EVPXI for
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dose vary with different assumptions about the magnitude of the uncertainty and the 

estimate used for the value of life

Lave and Omenn (1986)(11) present a framework for evaluating the value of short-term 

tests for carcinogenicity of chemicals to inform regulatory decision making. The 

approach identifies optimal battery of short term tests based on the accuracies of a test 

battery, and the trade-off between false negative and false positive misclassification of 

chemicals. The only uncertain input in the simple calculation is whether the chemical is 

carcinogenic or not; the study makes back-of-the-envelope calculations using point 

estimates for accuracy of tests based on empirical evidence, and rough guesstimates of 

costs of misclassification and prevalence of carcinogenic chemicals. The paper further 

discusses optimal "cut point" for considering a test result "positive" and cost- 

effectiveness of different battery of tests. The study finds that even with potential costs 

from misclassification, using short term tests as a basis for regulating chemicals as 

carcinogens may be superior to tolerating unregulated carcinogens absent animal 

bioassay results from a societal perspective.

Lave and Omenn (1988)(12) further explore the societal value of short term tests using a 

threshold analysis to show how sensitive/specific the tests must be to have a positive 

information value, using several different point estimates for prevalence of carcinogens, 

and relative screening cost. The paper finds that most accurate test may not be the most 

desirable testing strategy from a societal perspective, nor the least expensive test.

Lave et al. (1988)(13) consider the information value of the rodent bioassay by 

performing a threshold analysis for input values that yield positive information value. 

The decision model is a choice between three actions: classify a chemical as non­

carcinogen without a bioassay, test the chemical, and classify a chemical as carcinogen 

without a bioassay. Like the previous applications, the only uncertainty input in the 

calculation is whether the chemical is carcinogenic or not, and makes back-of-the- 

envelope calculations using point estimates for accuracy of tests based on empirical 

evidence, and rough guesstimates of the cost of misclassification and prevalence of
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carcinogenic chemicals. The objective is to minimize social cost, and they use three-way 

sensitivity analyses on various parameters to identify general conditions under which a 

rodent bioassay should be used for carcinogenic testing. The threshold analyses show that 

under many plausible values of inputs, conducting the bioassay would be prudent. On the 

other hand, if the prior belief of carcinogenicity is sufficiently high or concordance of 

animal and human test results sufficiently low, the strategy to classify the chemical as a 

carcinogen without further testing dominates the decision. In these cases, even if the 

bioassay shows a negative result, the optimal strategy is to classify the chemical as a 

carcinogen.

Lin et al. (1999)(25), like Evans et al. (1988)(18), evaluate the VOI from measuring radon 

in private homes to assist in the decision to take remediation action or not. However, 

rather than explicitly valuing willingness to pay (WTP) to reduce risk, the objective is to 

minimize total cost (including residual risk after remediation) based on an action level, 

the level of exposure above which one should remediate, that is determined by household 

composition, a household’s risk preference and WTP for risk reduction. In addition, the 

authors account for variability in risk of cancer based on gender and smoking status. For 

the example base case analysis, the authors chose an action level established by the U.S. 

EPA of 4 pCi/L, which implies a value of $210,000 per life (no year dollar given), 

assuming a household consisting of the average number of male and female smokers and 

never smokers in the United States. The sole uncertain input in their model is the 

concentration of radon, and is characterized by a lognormal prior distribution based on a 

hierarchical linear regression model that fits county level explanatory variables to radon 

measurements, yielding parameter values that vary by county and housing type. For the 

base case, the authors assume that long term monitoring produces an unbiased, 

lognormally distributed estimate of concentration such that the posterior distribution of 

true concentration given measurement is also lognormally distributed. They use a 

simulation technique to calculate the expected losses from monitoring, remediating 

without monitoring and doing nothing for different levels of prior estimates of 

concentration. Even at the low cost of $50 for monitoring, only 27% of households
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should monitor, while 68% of households should do nothing, and 5% should remediate 

immediately.

North and Merkhofer (1976)(16) compared four alternative strategies for controlling 

pollution emissions from electric power plants with the objective of minimizing total 

social costs. They evaluate the value of simultaneously resolving two uncertainties in 

the model: how a unit of emission translates to ambient concentration and the total health 

cost per unit increase in suspended sulfate concentration, which are assumed to be 

independent in the analysis. The characterizations are based on the authors’ subjective 

judgment on extreme values, and are modeled to represent the 5th and 95th percentile 

points on the cumulative probability distribution. They provide a sketch of the cumulative 

distribution for the ambient sulfate concentration increment and assume a lognormal 

distribution for the total health cost. The optimization problem is solved for three types 

of representative power plants: existing coal plant in "rural" area, new construction in 

"rural" area, and oil burning plant (originally designed for coal) in urban east coast 

location. The estimate a rough estimate of $250 million per year (no year dollar given) to 

as the expected value of eliminating uncertainties about both the relationship between 

emissions and ambient concentration and the health consequences of sulfur emissions 

(i.e., EVPI).

Olson (1990)(14) derives the "optimal screening rule" for carcinogenicity testing, where 

the objective is to maximize expected net social benefits. It focuses on how much 

toxicological information should be collected before taking regulatory action rather than 

which chemicals should be regulated first. Again, the only uncertain input is whether the 

chemical is carcinogenic or not, and the study uses a point estimate for prior probability 

of carcinogenicity, and unlike the previous papers, explicitly calculate the value of a 

cancer prevented -  $2 million per life in 1986 dollars. The study proposes a two tiered 

system, first conducting a mutagenicity test then conducting a bioassay, if the expected 

value of testing exceeds the expected value of taking immediate action. Point estimates 

for the sensitivity and specificity of mutagenicity and bioassay tests are derived from 

empirical data, and the framework is illustrated using a hypothetical example.
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Omenn et al. (1995)(15) use the framework from Lave et al. (1988)(l3) to calculate the 

social cost of 13 different approaches for predicting results of a life-time rodent bioassay 

developed through the Carcinogenic Prediction Challenge sponsored by the NTP. They 

use a hypothetical point estimate of prior probability and the sensitivity and specificity 

values implied by the strategies for 44 chemicals, and a rough estimates of consequences 

to determine social costs for each approach. They also calculate the social costs from 

different "cut points" for a positive results from one prediction method. The analysis 

shows that "accuracy" is not the socially optimal criterion for determining how "good" a 

prediction is if the consequences of misclassification (false negative and false positives) 

are not equal.

Reichard and Evans (1989)(19) consider the value of monitoring in remediation decision 

for groundwater that may be contaminated by arsenic. It takes a societal perspective in 

their analysis, and uses a risk assessment approach following the framework of Finkel 

and Evans (1987)(1?) and uses a baseline value of life set at $1,000,000 (no year dollar 

given). There are two uncertain inputs in the VOI analysis: the potency of arsenic in 

causing cancer, represented by a lognormal distribution based on epidemiological data, 

and the exposure to arsenic in the water, characterized by a lognormal distribution fitted 

to the output of a hydrogeologic model. They calculate both the EVPI and EVPXI for 

exposure information, as well as EVSXI for exposure from three different monitoring 

strategies compared to no monitoring. The analysis shows the EVSXI from the most 

aggressive is smaller than the cost of monitoring, however, the other two strategies yield 

positive VOI.

Taylor et al. (1993)(20), unlike the previous studies, assess the animal bioassay’s ability to 

determine magnitude of cancer causing potential, and explicitly incorporate exposure to a 

chemical and effectiveness of control strategies in assessing social costs. They consider 

four information collection strategies: (1) do nothing, (2) use test results from a 

subchronic bioassay as a proxy for cancer potency, (3) use test results from a long-term 

bioassay to calculate cancer potency, and (4) apply control strategy without any testing.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

The objective is the minimization of a social cost function and the one uncertain input in 

the model is carcinogenic potency of a chemical. The prior distribution of potency is 

based on the results of the first 213 NTP mouse bioassays. Since only half of the 

chemicals were determined to have positive results, for the base case analysis, the 

distribution is characterized as the sum of a delta function at zero potency with a 

probability mass of 50%, and a lognormal distribution fit to the statistically significant 

test results and normalized so that the entire distribution integrates to unity. They model 

likelihood of test results as a Binomial distribution and create a matrix of values to solve 

for the values of the posterior distribution. Hypothetical examples are given based on 

plausible values from empirical evidence to illustrate the framework. The analysis uses a 

threshold approach to show conditions under which value of information would be 

positive. Since the analysis explicitly includes exposure in the model, its importance in 

determining VOI can be measured. For a range of exposure values, both the subchronic 

and chronic animal tests have a positive information value. For small exposures, 

however, information from testing is unlikely to change the decision maker’s optimal 

strategy -  not control the exposure -  and therefore yields little information value.

Thompson and Evans (1997)(24) evaluate the value of national exposure information 

about perchloroethylene (perc) used in dry cleaning. Unlike other applications, the 

analysis compared regulating perc exposure at three different levels of decision making: 

individual dry cleaning facilities, by particular dry cleaning machine category (defined by 

type and size), and by particular machine type. Similar to the framework established in 

Finkel and Evans (1987)(17), the objective is to choose the pollution control option that 

minimize overall social cost including control costs and explicitly modeling and valuing 

risk of cancer from perc exposure. They considered variability by modeling risks to four 

distinct populations: dry cleaning workers, families of workers, consumers of dry 

cleaning services, and the general public from ambient exposure and valued each 

premature death from caner at $3 million. The analysis considered fourteen uncertain 

inputs characterized by various parametric distributions and an empirical distribution, and 

calculated the EVPI and EVPXI for various uncertain inputs using simulation. The EVPI 

ranges from $4 million per year to $8 million per year in 1989 dollars, depending on what
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level the regulatory decision is made. It notes that the EVPI estimates are an upper 

bound on the EVSI from collecting exposure information, however, it may also be an 

underestimate if the information would be useful in other decision contexts not 

considered in the analysis.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

Section 2: Value of Toxicological Information in Improving Health
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Chapter 3: Optimal Stopping Strategy for Tiered Chemical Testing -  A Value of

Information Approach
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1. Introduction

A 1997 report by the Environmental Defense called "Toxic Ignorance," brought 

national attention to the lack of toxicity information on many of the high production 

volume (HPV) chemicals used or produced in the United States.(1) In response, the U.S. 

Environmental Protection Agency (EPA) conducted a comprehensive study to review the 

public availability of toxicity tests.(2) The study searched for six types of tests that the 

Organization for Economic Cooperation and Development (OECD) considers to be 

minimum information needed to screen potentially hazardous chemicals for further 

toxicological testing(3) and found that of the nearly 3,000 HPV chemicals, 43 percent of 

the chemicals had no basic toxicity information while only 7 percent had a complete set 

of basic information. The results were more encouraging for the approximately 500 

chemicals used in consumer products; only 7 percent had no basic information while 

nearly 25 percent had all six sets of information. Nonetheless, the study highlighted the 

dearth of information on chemicals the public may be highly exposed to. In response, the 

EPA initiated the Chemical Right-to-Know Initiative (ChemRTK) in April of 1998 to 

gather basic toxicity information for all of the HPV chemicals in the United States.(4)

Executive Order 13045 underscored the potential for children to suffer 

disproportionately from health and safety risks due to differences in their physiology and 

patterns of exposure, and directed each federal agency to make assessments of whether 

elevated risks exist.(5) Since the basic test information gathered through the HPV 

program may not be enough to adequately assess health risks to children, as part of the 

ChemRTK initiative, the EPA initiated the development of a children’s health chemical
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testing program and solicited public input on how best to collect additional toxicological 

information beyond the HPV requirements. Following the input from stakeholders and 

the Science Advisory Board, the EPA formally announced the Voluntary Children’s 

Chemical Evaluation Program (VCCEP) and asked manufacturers to sponsor the 

collection of information for twenty-three chemicals identified for the pilot phase of the 

program.®

The VCCEP consists of a battery of tests divided into three tiers as indicated in 

Table 3.1. The first tier includes screening tests to assess qualitative information on the 

potential toxic and carcinogenic effects and corresponds to the tests required for the HPV 

screening program. It will yield a determination of mutagenicity and acute toxicity 

measures such as lethal dose 50 (LD50), the dose level of a chemical that causes the 

death of 50% of the test animals when given all at once. The second tier includes tests 

for additional qualitative hazard data as well as data to establish dose-response 

relationships for non-cancer risks, and the determination of the maximum tolerated dose 

(MTD), the highest dose level that can be tolerated by the test animal over its lifetime, 

which will be used to set testing doses for long-term bioassay in the third tier. The third 

tier includes long-term animal bioassays to refine non-cancer dose-response relationships 

as well as carcinogenicity. Developmental toxicity and reproductive effects in the second 

tier and developmental neurotoxicity in the third tier are the only tests that are 

specifically designed to address prenatal and neonatal health.

In conjunction with the toxicity information, the VCCEP program collects 

exposure information for each chemical in tiers. The first tier is a screening level 

assessment designed to derive a "conservative" estimate of exposure to children or
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perspective parents. The second and third tier assessments should estimate central 

tendency of exposure as well as estimates of "high" exposure. For each tier a risk 

assessment will integrate the available toxicity results and exposure information, and the 

sponsors will develop a data needs assessment to identify additional information that 

would be necessary to "adequately assess the potential risks to children."(6) EPA will 

then make a determination about whether the risks have been adequately assessed. 

However, the VCCEP program currently does not have clearly defined criteria to 

determine when information is "adequate."

Nearly two decades ago, the National Research Council published a report on 

priority setting for toxicity testing recognizing the importance of a systematic approach to 

reduce the uncertainty about a chemical’s hazard that takes into consideration time and 

budget constraints. Moreover, it recognized the importance of a value of information 

(VOI) approach, noting: "the contribution of this concept is in making explicit that the 

goal of the testing program should be embodied in the priority-setting system. "(7) Indeed, 

decision analysts have argued that "placing a value on the reduction of uncertainty is the 

first step in experimental design, for only when we know what it is worth to reduce 

uncertainty do we have a basis for allocating our resources in experimentation designed 

to reduce the uncertainty. "(8) The VOI approach considers both the value of collecting 

information in terms of making better management decisions that lead to increase in net 

benefits and the cost of collecting information. Since a stated goal of the VCCEP 

program is to "ensure that health effects and exposure data are made available to allow 

EPA and others to evaluate the risks of these chemicals so that mitigation measures may 

be taken as appropriate,"(6) it would be constructive to explore how the application of a
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VOI framework can provide some guidance to decision makers in determining when to 

require additional testing in a tiered program such as the VCCEP.

VOI analysis requires modeling a probability distribution for the prior belief 

about the uncertain input and the belief about the accuracy of the information collected.

For carcinogenicity, there are empirical relationships established by analyses of chronic 

animal bioassay test results from the National Cancer Institute/National Toxicology 

Program (NCI/NTP) and other tests from the general literature that can be used to predict 

the result of long-term bioassays. A Tier 1 test such as mutagenicity is highly predictive 

of whether a chemical is found to be carcinogenic.(9) In addition, LD50 has been found to 

be highly correlated to carcinogenic potency.(1012) Likewise, MTD from tier 2 testing has 

been found to be highly correlated to potency/10,l3) Unfortunately, the correlations 

between test results of the various non-cancer tests are not well established, though there 

has been some empirical work on the relationship between LD50 and reference dose.(I4)

Therefore the paper will specifically explore how the carcinogenicity data collected 

through the VCCEP may be used to inform risk management decisions. This analysis 

will explore the optimal stopping criteria for a chemical where tier 1 screening data have 

been collected.

Section 2 reports the methods including the decision analytic framework for 

determining optimal actions, the cancer risk model, the Bayesian updating of potency 

estimates, the calculation of the value of information, and a description of the inputs for 

four hypothetical cases that represents two extreme cases of test results from the first tier 

-  non-mutagen with low acute toxicity and a mutagen with highly acute toxicity -  and 

two intermediate cases that will be used to illustrate the VOI framework. Section 3

100
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reports the results of the analysis including the distribution of the potency estimates 

following test results, the expected value of information, the optimal testing decision 

given tier 1 information, and sensitivity of the results to various assumptions in the base 

case analysis. Section 4 offers some interpretation and discussion of the result including 

policy insights, limitations of the analysis, and areas for further research.

2. Methods

2.1 Decision Analytic Framework

VOI analysis requires modeling the available set of actions, characterizing prior 

belief about uncertain inputs and belief about the accuracy of the information collected 

(i.e., the likelihood of observing a particular test result), and quantifying all relevant 

consequences of actions from the perspective of the decision maker using a common 

metric. Several previous analyses used a simple decision analytic framework with point 

estimates to determine whether or not toxicological testing would correctly distinguish 

whether a chemical was a carcinogen or not. (15'17) Taylor et al.(18) added more 

complexity to the evaluation by assessing the animal bioassay’s ability to determine 

magnitude of cancer causing potential, and explicitly incorporate exposure to a chemical 

and effectiveness of control strategies in assessing social costs. They developed 

hypothetical examples based on plausible values from empirical evidence to illustrate the 

framework. The analysis in this paper expands on the previous analyses and explores the 

optimal testing strategy in the context of an actual tiered testing program.

This analysis uses the perspective of an expected net benefits maximizing 

decision maker (NBMDM), the "traditional" decision maker used in decision analyses.
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The NBMDM regulates a chemical based on a subjective prior assessment of potency 

updated by indirect measures in addition to "hard" data from animal bioassay, uses the 

maximum likelihood estimate of potency to determine possible population risk, and 

chooses the level of regulation that will maximize net societal benefits. Figure 3.1 

represents a simplified schematic of the testing decision for a NBMDM; a square 

represents a decision node, a circle represents a chance node, and a triangle is a terminal 

node. The NBMDM uses the empirical relationship between test results in each tier to 

refine the estimate of potency.1 The figure represents five testing strategies given the 

results of the tier 1 testing of the VCCEP (i.e., acute toxicity and mutagenicity results of 

HPV program): (1) hypothetical collection of perfect information, which will serve as an 

upper bound for the willingness to pay for reducing uncertainty to make a better 

regulatory decision; (2) a tiered approach of the VCCEP where MTD data are collected in 

the second tier, and the NBMDM will decide whether to make a regulatory decision 

based on the MTD result or continue to test the chemical in a long-term rodent bioassay; 

(3) conducting the bioassay regardless of the MTD result; (4) stopping after the 

subchronic testing regardless of the MTD result; and (5) conduct no further tests and 

make the optimal regulatory decision based on only tier 1 information.

Figure 3.2 illustrates the relationship between the test results to the estimation of 

human cancer potency. Mutagenicity from tier 1 is highly predictive of whether a 

chemical is found to be carcinogenic.191 LD50 from tier 1 has been found to be highly 

correlated to carcinogenic potency as measured by TD50 for carcinogens.110"121 

Likewise, MTD from tier 2 testing has been found to be highly correlated to TD50.110,131

1 In this analysis we use the Maximum Likelihood Estimate of potency as a proxy for the expected potency 
that a NBMDM would use to calculate the expected risk.
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Most problematic is the relationship between rodent and human carcinogenicity.

Previous researchers have used the inter-species concordance between rats and mice as an 

estimate of human to rodent concordance of bioassay result.(17,18) A similar approach is 

used in the sensitivity analysis. The NBMDM should choose the testing strategy that 

yields the highest expected net benefit including testing costs, or equivalently, the 

strategy that yields the highest net value of information. The VOI net of testing costs is 

the difference between expected net benefit of optimal regulatory action with 

information, and the expected net benefit from the optimal regulatory action with only 

prior information. The optimal level of regulation given an updated expected risk of 

cancer is based on an evaluation of the benefits to society from cancer cases prevented 

net of regulatory control costs. The annualized net benefit for each control option k is:

£ k v Y , R <n ‘ ~ c k

where

m  = ' v (d
(i + r)

£k is the control efficiency for regulatory strategy k (proportion), 

v is the value of a case of cancer prevented (2000 U.S. dollars),

Ri is the annual risk of cancer to population in exposure group i (probability), 

rii is the population in exposure group i (persons/year), and 

Ck is the annualized cost of regulatory control (2000 U.S. dollars/year). 

r is the discount rate (percentage), and 

t is the delay in action from testing (years).
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The expected net benefit from each testing strategy is the difference of the expected net 

benefit from the optimal control option and the annualized cost of testing (2000 U.S. 

dollars).

2.2 Risk Model

We model the lifetime risk of developing cancer using a one-hit model which 

assumes the risk of tumor is equal to the risk of developing cancer at an unspecified site: 

1 -exp  ( - a  —fid )  (2)

where

• 1 -exp(-a) represents the background tumor rate,

• fi is the carcinogenic potency (mg/kg/day)1, and

• d is the dose (mg/kg/day).

The annual risk of cancer above the background level, R, is estimated by dividing the 

lifetime risk above the background rate by 70 years/lifetime, the approximate human life 

expectancy:

^ _ e x p ( - a ) [ l - e x p ( - ^ ) ]
70

Background tumor rates for rodents vary greatly by species, gender and target site.(19) 

However, most rodent carcinogens (i.e., 92% of mouse carcinogens and 82% of rat 

carcinogens) can be identified by the eight most common sites.(20) The most common 

target site for both mice and rats is the liver, followed by the lung in mice and the 

mammary gland in rats.(20) The background tumor rate for liver adenoma ranges from 

0.1% to 9.7% (mean of 3.4%), for various types of lung tumors it ranges from 0% to
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0.2% (mean of 0.0%), and for various types of breast tumors it ranges from 0% to 4.5% 

(mean of 0.8%).(19) In this analysis, we assume that the background tumor rate is 2% for 

the base case and conduct sensitivity analyses to determine the impact of this assumption.

Prior distribution o f carcinogenic potency

In this analysis we assume the uncertainty faced by the NBMDM relates to the 

true value of carcinogenic potency, (3, and the potential results of testing. All other input 

values are assumed to be known with certainty. The uncertain input values were 

generated using the random sampling function in S-Plus 2000. Table 3.2 summarizes the 

parameters for distributions the distributions used to characterize uncertainty.

Similar to the approach used in Taylor et al.(18) and Hammitt and Cave,(21) we 

model the prior probability of potency as a sum of a probability mass at zero potency 

(i.e., not a carcinogen) and a continuous parametric distribution for positive potency. 

Empirical studies show that mutagenicity is a good predictor of whether a chemical will 

test positive in a bioassay for carcinogenicity. Gold et al.(9) show that of the 465 

chemicals in the carcinogenic potency database tested for both mutagenicity in 

Salmonella and bioassay in rats and mice, 79% of chemicals with positive mutagenicity 

were found to have positive rodent bioassay results, while 49% of non-mutagens were 

found to be carcinogenic in bioassays. In this analysis, we assume that a positive 

mutagenicity test result from tier 1 testing implies a probability of positive potency of 0.8 

and a negative mutagenicity test implies a probability of positive potency of 0.5.

Several studies report that although LD50 cannot predict whether a chemical will 

be a carcinogen, but if a chemical is a rodent carcinogen then a strong empirical
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correlation exists between LD50 and potency.(1012) The most recent analysis by Metzger

et al.,(11) based on a data set of 109 chemicals included in the NCI/NTP series with 

positive test results in rats and mice, showed that the distribution of the log of the ratio of 

LD50 to TD50 (dose that reduces the proportion of tumor-free animals by 50%):

can be estimated by a normal distribution with mean of 0.83 and standard deviation 0.79.

which implies that the natural log of potency will follow a normal distribution, (i.e., 

positive potency is lognormal).

To estimate the prior distribution of positive potency, we randomly sample 1,000 

values from the normal distribution for the ratio in equation (4), and calculate the potency 

implied by the distribution using the transformation in equation (5). Since the values of 

positive potency given prior information are randomly generated through Monte Carlo 

simulation of 1,000 values, the probability of each value is 0.001. Combined with the 

prior probability of a positive potency provided by the mutagenicity test result:

(4)

For a one-hit model, the potency is related to TD50 by the following equation :(I0)

ln (2 ) - tf  

TDS o
(5)

mutagen
not

(6)

the probability of any sampled positive value of potency is:

(0.001X0.8)
(0.00l)(0.5)

mutagen
not

(7)
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P osterior distribution given M TD

For predicting possible tier 2 subchronic bioassay results, we use the empirical 

relationship of LD50 and MTD reported in Gombar et al.(22) for 269 compounds gathered 

from various databases. From this database, we drop the 12 chemicals where the MTD is 

greater than LD50, and use @Risk™ version 4.5 (Ref.) to fit distributions to the ratio of 

MTD to LD50:

K ^ l o g , , , ^ 2- (8)
50

which yields a lognormal distribution with fi]nK = -2.3 and <j ]bK =1.4 produce a fit with 

X 1 statistic of 32 and p-value of 0.01, which implies a good fit. To estimate the 

distribution of possible MTD results, we randomly sample 1,000 values from the 

lognormal distribution, and calculate the MTD implied by the ratio.2

Crouch et al.(13) analyzed a data set of 213 NCI/NTP rodent bioassays and found 

that potency is roughly proportional to 1/MTD with a strong correlation (rrat = 0.91, rmice 

= 0.88). However, the MTD, like the LD50, is not predictive of whether a chemical will 

be found to be carcinogenic or not. Taylor et al.(18) used the results of the study to 

estimate the likelihood of observing a particular MTD given positive potency to be a 

lognormal distribution with as standard deviation of crln>, = 1.2. Bayesian updating of the

potency distribution is calculated using the procedure described by Brand and Small.(23) 

For positive potencies:

2 An alternative approach, pursued in the analysis by Taylor et al. (1993), uses the empirical relationship 
between potency and MTD to predict MTD results given the prior distribution. This approach yields a 
predicted MTD distribution with similar mean and slightly greater variance than the approach used in this 
analysis.
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(n  , p W L (sj \ P ‘) (osP\Pi*\\SjiPi'>ty 1000  ̂ ^
^LP{Pk)L(sj  I A )
k = 1

The input s is the prediction of potency based on the relationship between potency and 

MTD (R2=0.84) for 108 notice carcinogens reported in Crouch et al.(13):

log10s = log10- ^ - - 0 . 4  (10)

Since MTD is not predictive of whether the chemical is carcinogenic or not, the posterior 

probability that the chemical is not carcinogenic given any sampled value of MTD is:

p { P  =  0 \ s )  =  p ( P  =  0 )  ( n )

and the posterior probability of a sampled value given the sampled value sj is: 

f ✓ o .m  P(Pi)L (si \ P )
P \ P M } )  = P { P > v ) n n ---------------------  <12>

Y , p { P k ) L {sj \Pk)
k=1

In addition, since s is randomly generated based on the LD50, the unconditional 

probability of observing s is:

h(s,)  = —  (13)
v Jl 1000

Posterior distribution given bioassay

The bioassay protocol established by the NCI/NTP requires two species of 

rodents (rat, mice) -  50 males and 50 females each -  to be tested at three dose groups 

(control, 1/2 MTD, and MTD) from 6 weeks to 24 months of age. For simplicity, in our 

analysis we consider an ideal type experiment with a single group of animals (50), and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

two dose groups (control and MTD), therefore there are 51 possible bioassay results 

ranging from no animals with tumors to all 50 animals with tumors. Assuming the 

animal results are probabilistically independent, the likelihood of observing a particular 

bioassay result follows a binomial distribution. The probability of tumor for the group 

exposed at the MTD is:

Since the Binomial likelihood is a discrete probability distribution, we can calculate the 

posterior probability of all 51 possible test results (given a 50 animal test) given a 

particular MTD test result by the equation:

where x  is the number of animals with a tumor. The denominator represents the 

distribution of observing x given a particular MTD result:

of 70% can serve as an upper bound for the concordance of carcinogenicity in rodents

database tested in both rats and mice, 76% of chemicals that were positive in rats were

also positive in mice and 70% of chemicals that were positive in mice were also positive

in rats. The data also show that 75% of chemicals that were negative in rats were also 

negative in mice, and 81% of chemicals that were negative in mice were also negative in

p [tumor) = 1 -  exp [ -a  -  fiMTD) (14)

(15)

£ p ( A  l ^ )L(xl Pk>sj)
k=1

1001

(16)

Lave et al.(17) argue that observed concordance of bioassays results between mice and rats

and humans. Taylor et al.(18) use 70% in their sensitivity analysis and use 100% in their 

base case analysis. Gold et a l .(24) report that of 392 chemicals the carcinogenic potency
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rats. We assume 100% concordance for the base case analysis and compare the result to 

assuming 75% positive and negative qualitative predictive value of rodent assay. The 

distribution of potency given positive carcinogenicity is assumed to be the same between 

rodents and humans.

2.3 Expected value of information

Given the complexity of the problem, we developed a risk model that we solved 

using simulation in S-Plus 2000™ . Chapter 1 and 2 discuss the evolution and use of 

Monte Carlo simulation for solving VOI problems, and our methods are consistent with 

those used by other researchers (See appendix A2 for the complete S-Plus code).(25"27)

The lowest branch in the tree in Figure 3.1 represents taking action based only the 

prior distribution of potency developed from mutagenicity test result and LD50:

E{NB | prior} = max
k

1001

i= \
(17)

Here, the NBMDM evaluates the expected net benefit given the prior distribution from 

each regulatory action and chooses the regulatory action with the highest value.

The middle branch represents a tiered approach where the NBMDM compares the 

expected net benefit of taking immediate action after an MTD result or the expected net 

benefit of waiting to collect the bioassay result, and chooses the testing strategy with the 

higher expected net benefit. The net benefit of taking immediate action after measuring 

the MTD is:

1001iooo r 
E{NB\MTD] ~  l l i  1m a x  | Y , ( N B i , k ) p ( P i  K )  \ \ h ( Si ) - Cner2 ( 1 8 )

7=1 I k

110
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Here, the NBMDM chooses the regulatory action that maximizes expected net benefit 

given the posterior distribution of potency given a particular value of the MTD. The 

value is calculated for each of the 1,000 different values of the MTD sampled. The net 

benefit values are averaged over all of the values of the MTD, and the cost of testing is 

subtracted. The expected net benefit from taking action after collecting the bioassay 

result is:

1000

7=1
E{NB\Bio} = ^  ^ jm a x S 7 ’ * l )  | W * /  \h { S j ) ~ C i e r 2 - C >

1=1V

1001

(=1
" tie r i

(19)

Here, the NBMDM chooses the regulatory action that maximizes expected net benefit 

given the posterior distribution of potency given a particular value of bioassay result and 

the MTD. The value is calculated for each of the 51 possible bioassay results and 1,000 

different values of MTD sampled. The net benefit values are averaged over all of the 

values of the bioassay and MTD, and the cost of testing is subtracted.

The highest branch represents taking action based on hypothetically available 

perfect information at no cost and no delay:

1001 r
E{NB\ perfect} = ^ \ max(NBik) p(fi . )  (20)

;=i L k -1

Here, the NBMDM evaluates the net benefit from each value of potency, and chooses the 

regulatory action that maximizes the net benefit. The value is then averaged over the 

prior probability of the potency values.

The difference between the top and bottom branches represents the expected 

value of perfect information (EVPI), which is the upper bound of the willingness to pay
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for reducing uncertainty about potency. The NBMDM, however, must choose a testing 

strategy that will provide only imperfect information. The net expected value of sample 

information (EYSI) for the tiered strategy, which accounts for testing cost, is the 

difference between the expected value of testing and expected value from acting on tier 1 

information.

An important property of VOI is that new information must lead a decision maker 

to change the course of action under some scenarios for the information to be of value. If 

there is no change in action for any possible information, there are no improvements in 

welfare. Therefore, if additional information will never change a decision, there is no 

value in the information from a decision analytic perspective. In addition, since testing is 

not costless, testing may yield a negative net EVSI (i.e., the "No further testing" strategy 

has the highest expected net benefit), in which case the NBMDM is better off not doing 

any testing.

2.4 Four Illustrative Cases

Similar to the approach used by Lave et al.(1988)<17) and Taylor et al.<18) this 

analysis uses a generic environmental control decision to gain general insights on the 

value of testing. We determine the optimal testing strategy for four illustrative cases of 

possible tier 1 testing results:

• Case A: a chemical tests negative in the mutagenicity test, and has relatively low 

acute toxicity (LD50 of 8000 mg/kg);

• Case B: a chemical tests positive in the mutagenicity test but has a relatively low 

acute toxicity (LD50 of 8000 mg/kg);
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• Case C: a chemical tests negative in the mutagenicity test but has relatively high 

acute toxicity (LD50 of 60 mg/kg);

• Case D: a chemical tests positive in the mutagenicity test and has a relatively high 

acute toxicity (LD50 of 60 mg/kg).

Test results of case A imply a lower bound value of expected potency since the chemical 

is not mutagenic and an LD50 value of 8,000 mg/kg represents roughly the 95th 

percentile of LD50 values reported in Gombar et al.(22) Similarly, test results of case D 

imply an upper bound value of expected potency since an LD50 of 60 mg/kg correspond 

to the 5th percentile of LD50 values.

To keep the calculation general, rather than choosing a particular distribution of 

exposures for multiple exposure groups, we collapse the information into a measure we 

call the exposure weighted average dose d :

where N  is the sum of all of the populations exposed. Since for each exposure group the 

annual risk can be estimated as:

when fid  < 0.2, the expected total cases of cancer per year can be estimated by the 

equation:

where R is the exposure weighted average risk of cancer. In this analysis, we vary the

-  y  d,nt d =±*-L-L (21)
N

- e x p (-a ) /? < /7 0 (22)

(23)

possible exposure weighted average dose from 10'9 to 1 mg/kg/day. This range
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corresponds to the range of average U.S. population exposures to approximately 20 

rodent carcinogens for which both concentration and exposure data are available 

summarized in Table 3.3.(9) We assume that the total population exposed annually is the 

current U.S. population, which we estimate to be 280 million people.

Table 3.4 summarizes the base case values of constant inputs and the range of 

values used in the sensitivity analysis. For all cases, we evaluate the VOI for exposure 

weighted average dose ranging from 10'9 to 1 mg/kg/day. For the base case we estimate 

the value of a cancer prevented to be $7 million in year 2000 dollars to assess the benefit 

of controlling exposure to the chemical being tested. The $7 million estimate represents 

the median value from a comprehensive literature review by Viscusi and Aldy(28) of the 

value of a statistical life (VSL) estimate derived from labor market studies. This value of 

a cancer case prevented is an overestimate of the true value since it assumes that all cases 

of cancer are fatal. In a sensitivity analysis, we assess the impact of changing the value 

to $5 million and $12 million, which represent the first and third quartile, respectively, of 

the VSL estimates in the labor market studies.

We vary the efficiency of control options from 0% (no regulation) to 99%, and do 

not explicitly consider the impact of banning a chemical (100% control). In the base case 

analysis, the NBMDM has three control options: 0%, 50%, and 99%. In sensitivity 

analysis, we examine the impact of ranging the available options from only two (0% and 

99%) to a roughly continuous option of 100 (from 0% to 99% in 1% increments).

We assume quadratic cost function that depends on the parameter "q":

- l n ( l - f AC t =  V a  (24)
q
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where q is set such that the cost of the 99% control option is $100 million in year 2000 

dollars:

q ^ - l n ( l - e 99%) (25)

C 99%

We choose $100 million per year in the base case since it represents a threshold 

considered "economically significant" by federal govemment.(29) We vary the value from 

$1 million to $10 billion per year in sensitivity analysis. We use a discount rate of 5% 

for the base case and 3% and 7% in sensitivity analysis.(30'32) We use EPA’s estimates of 

$200,000 for the one time cost of tier 2 subchronic testing and $1,300,000 for tier 3 long­

term bioassay costs, both in year 2000 dollars.(33) The value of information is calculated 

for a range of values of exposure weighted average dose ( d  ), regulatory options, costs of 

control, and dollar value of a cancer case avoided.

3. Results

3.1 Distribution o f potency

Figure 3.3A shows the cumulative probability distribution of potency for each of 

the four cases and the potency distribution for all NTP tests with potency on a log scale. 

The Tier 1 test results reduce the spread of the potency distribution and a higher toxicity 

(lower LD50 result) has the effect of shifting the curve to the right (since higher 

potencies are more probable given higher acute toxicity). A positive mutagenicity result 

has the effect of shifting down the cumulative distribution curve such that the prior 

probability of zero potency is 0.2 for a mutagen and 0.5 for a non-mutagen. The 

expected value of potency for cases A, B, C, and D are 0.0015, 0.0026,0.21, and 0.30
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(mg/kg/day)1 respectively. Figure 3.3B shows the expected annual risk of cancer 

implied by the prior distribution of potency for the range of doses considered in this 

analysis both on a log scale. For any given dose, the difference in expected annual 

cancers between case A and D span over three orders of magnitude.

Figure 3.4 uses the results of case D to illustrate the impact of each level of 

information collection on the posterior distribution of potency. Figure 3.4A compares the 

cumulative probability for the prior distribution of potency and the posterior distribution 

of potency for three values of MTD, the 1st quartile, median, and 3rd quartile of sampled 

MTD values. As the figure shows, the spread of the distribution becomes much smaller 

given an MTD result, however, the probability of zero potency remains 0.2 regardless of 

the MTD result since MTD is not predictive of whether a chemical is carcinogenic.

Figure 3.4B compares the cumulative probability for the posterior given the median 

sampled MTD value, and a bioassay result of no animals with tumors, 1, 2, 3, 4, and 5 

animals. Given a non-zero background tumor rate, a zero result in a bioassay will almost 

certainly imply that the chemical is not a rodent carcinogen. As the number of animals 

with tumors increase, the probability of zero potency decreases rapidly, and observing 5 

animals with tumors (10%) would imply that the chemical has a greater than 95% 

probability that the potency greater than 0, though the potency is likely to be fairly low.

3.2 Expected value of sample information

The points of indifference between control strategies (the break points) determine 

the shape and magnitude of the VOI curve as a function of risk. When shifting from one 

strategy to another, this point occurs where the expected net benefits are equal:
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ekvRn-ck = e k+lvR n-ck+l (26)

where ek and c.k is the control efficiency and control cost of control option k, and k+ 1 is 

the next more stringent level of control available. Therefore, the breakpoint risk is:

The breakpoint risk is the same for all four cases because it depends only on the ratio of 

control costs to the value placed on the cancer cases prevented. However, the breakpoint 

dose differs since the expected value of potency is different across cases. Given our 

model for risk in equation (3), the breakpoint dose is:

For the four cases, these values are given in Table 3.5.

Figure 3.5 shows the (A) optimal control decision without further testing and (B) 

value of tiered testing net of testing costs for all cases plotted against exposure weighted 

average dose. The first plot shows the breakpoints where the optimal prior strategy 

switches from no control to 50% control and then from 50% control to 99% control for 

all four cases. As the second plot shows, since we assume a quadratic cost function, the 

leap from 50% to 99% determines the main peak of the VOI curves, though a small peak 

exists for the transition from 0% to 50% control. The range of exposures for which value 

of tiered testing is positive spans roughly two orders of magnitude for each of the cases, 

though the range is slightly smaller for mutagens (Cases B and D). When exposure is 

very low, the optimal decision is always no control, no matter how high the carcinogenic 

potency; therefore, the value of information is zero or close to zero. Similarly, when 

exposure is very high, the negative consequence of not controlling a carcinogen are so

* —  C k +1 C k (27)

(28)
-0

117
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high that optimal action after testing rarely deviates from the optimal action without 

testing of 99% control. Since the bioassay cannot perfectly predict whether a chemical is 

a carcinogen or not, the value of imperfect information approach zeroes. Furthermore, by 

delaying the action until both tier 2 and tier 3 test results are evaluated, there are foregone 

benefits that increase proportionally to the level of exposure.

Figure 3.6 (A) shows the value of information net of testing and delay costs for 

case D with the base case assumptions from two information collection scenarios 

described in Figure 3.1: availability of hypothetical perfect information without cost and 

the tiered approach. Both reach their maximum at the breakpoint between 50% and 99% 

control, though a slight peak can be seen at the breakpoint between no control and 50%. 

In the case of perfect information, given the assumption of 20% probability that the 

chemical is not a carcinogen, obtaining perfect information prevents unnecessarily 

spending $100 million in control costs 20% of the time. Panel B shows the discounted 

expected cost savings for Case D, and Panel C shows discounted expected cases of 

cancers prevented from tiered testing. As the panels show, to the left of the main 

breakpoint, the net EVSI is driven by reducing regulatory false negatives; with additional 

information from the MTD and bioassay, the NBMDM switches from 50% to 99% 

control in some cases, thereby preventing more cancers, but at a higher cost. To the right 

of the breakpoint, regulatory false positives are reduced such that the NBMDM prevents 

fewer cancers but saves control costs by switching from 99% to 50% in some cases. 

However, greater the dose, the higher the probability that 99% is the optimal choice even 

with additional information so the cost savings decrease. The foregone benefits from 

waiting to act drive
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3.3 Optimal Testing Strategy

NBMDM should conduct Tier 2 testing for the range of exposures where the net 

value of tiered testing is positive. Given the three control options, the costs of control, 

and the value of per cancer case avoided, all the NBMDM needs to know is whether the 

average dose is within that range. Figure 3.8 reports the optimal testing strategy given
a

Tier 1 as a function of dose and cost of 99% regulatory control for cases A and D. 

Between the two extreme cases, there is a shift in the no control vs. testing frontier to the 

right about two orders of magnitude along the dose axis, but the general story is similar. 

For both cases A and D, over a range of exposure weighted average doses, the cost of 

control matters in the decision to conduct further testing. Furthermore, even with the 

assumption that rodent bioassays are 100% concordant with human carcinogenicity and 

for the most extreme case (i.e., case D, which represents an "upper bound" for potential 

Tier 1 results), Tier 2 testing is not optimal for a range of plausible doses and control 

costs. If we assume that the chemicals in the Table 3.3 represents a random distribution 

of possible levels of average environmental exposures, a group of non-mutagenic 

chemicals with low toxicity, at the base case level of $100 million per year in control 

costs, doing nothing (no testing, no control) would be the optimal action for about three 

quarters of the chemicals. Even for mutagenic chemicals with high toxicity, the optimal 

action would be no further action for about a third of the chemicals. For another third the 

optimal strategy would be to control at 99% without any further testing.

3 Contour plot for case A is very similar to the plot for case B, except case B contains a small area in the 
bottom right section where 99% control is optimal. The plot for case C is very similar to the plot for case 
D, with a slightly smaller area in the bottom right where 99% control is optimal.
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3.4 Sensitivity Analysis

Table 3.7 reports the sensitivity of the break point dose for optimal testing 

decision to discount rate, value of cancer prevented, qualitative discordance, number of 

control options and background tumor rate for Case D at three cost levels of 99% control: 

$1 million, $100 million, and $10 billion. Lowering the discount rate reduces the 

annualized testing costs and the foregone benefits from waiting to act such that it 

increases the net EVSI. The decision to control nothing vs. tiered testing is essentially 

insensitive to the discount rate since the differences in the net EVSI are due mainly to the 

effect of the discount rate on the annualization of direct testing costs. On the other hand, 

for the decision to do tiered testing vs. controlling at 99%, lowering the discount rate 

reduces the cost of delay such that the breakpoint is reached at a higher dose (i.e., testing 

is optimal for a larger range of exposure values).

In contrast, the impact of different values for preventing cancer on net EVSI is 

less predictable since it affects both the expected net benefit given testing information 

and the expected net benefit given only prior information. Figure 3.8 shows the 

sensitivity of the optimal control decision without further testing and net EVSI to value of 

a cancer case prevented when control costs are $100 million. Since increasing the value 

for cancer prevented shifts the breakpoint dose of the optimal control decision without 

further testing to the left, it shifts the EVSI curves to the left as well. Therefore, as the 

values in Table 3.7 shows, higher VSL shifts the cut-off exposure weighted average dose 

to a lower value while lower VSL shifts the cut-off to a higher value.
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In the base case analysis we assumed 100% concordance between rodents and 

human carcinogenicity, which overstates the value of bioassay. Assuming a 75% 

concordance between rodents and humans reduces the EVSI and narrows the range of 

exposures for which testing Tier 2 is optimal. Increasing the number of control options 

has an ambiguous effect on the cut-off doses for testing vs. stopping, but the changes are 

relatively small. The optimal testing decision is also relatively insensitive to changes in 

the background tumor rate. In general it appears that although the magnitude net EVSI 

may vary somewhat depending on the assumptions about discount rate, VSL, and number 

of available control options, the range of exposures for which tiered testing is optimal is 

fairly stable. In other words, Figure 3.7 is not sensitive to these parameters.

We also evaluate the impact of choosing to sample 1,000 values for potency, by 

repeating the analysis for ten different random seeds. Table 3.8 reports the EVSI for four 

different dose levels and the break point dose for the decision to no control versus test 

Tier 2 and test Tier 2 versus 99% control for 10 different iterations along with the mean 

and standard deviation of the 10 iterations, and an estimate of the 95% confidence 

interval for the mean of the iterations. Though the EVSI estimates vary somewhat, with 

the spread increasing with higher levels of exposure, the break point dose of whether to 

test Tier 1 or not is fairly consistent.

4. Discussion

How should EPA determine whether currently available information is "adequate" 

to assess potential risks to children? Collecting additional information will assist in 

refining the risk estimate, but perfect information can never be collected. How much
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should uncertainty about risk be reduced before action is taken? This paper has argued 

that an important criterion for making that determination is whether additional 

information would assist in making better risk management decisions to improve overall 

societal welfare. It shows that both the level of expected human exposure weighted 

average dose and economic considerations such as control costs for reducing exposure 

matter in the decision to pursue further testing. The analysis shows that if the exposure 

level is low enough and control costs are high enough, then gathering information beyond 

Tier 1 screening tests is not optimal, since the additional information would rarely 

indicate that controlling exposure is necessary. In contrast, since we assume that the 

decision maker is able to regulate through analogy (i.e., regulate a chemical as a 

carcinogen based on results from Tier 1 results), if the exposure is high enough and 

control costs low enough, maximum control should be implemented without Tier 2 

testing. These observations hold over plausible exposure and cost ranges for both of the 

two extreme cases of Tier 1 test results. Sensitivity analysis showed that factors such as 

the value placed on a cancer case prevented and discount rate are not as critical to the 

decision.

Fortunately, the VCCEP structure recognizes the importance of exposure 

information and simultaneously including screening level exposure information in Tier 1 

to derive a "conservative" estimate of exposure to children or perspective parents. This 

type of bounding exercise can help determine whether exposure to a chemical is within 

the range where further testing is beneficial. Alternatively, simple measures of exposure 

based on an estimate of exposure efficiency or intake fraction -  the fraction of a 

chemical released that is eventually inhaled or ingested -  can be used to estimate whether
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or not the exposure crosses the threshold where Tier 2 testing is desirable, since it "may 

be used in risk assessments without introducing appreciable uncertainty".(34) On the other 

hand, the VCCEP does not collect "screening" level assessments of potential risk 

reduction opportunities, or any information about their likely effectiveness or costs of 

implementation. This information is important for the "middle" range of exposure levels 

where the decision to continue to test or not depends on the cost and effectiveness of 

control.

Though the analysis provides some interesting policy insights, there are important 

limitations to the results and many potential important refinements. For example, since 

we assume in the base case perfect concordance between the rodent bioassay result and 

human carcinogenicity we are greatly overstating the value of animal testing. The 

sensitivity analysis using mouse to rat qualitative discordance as a proxy for human to 

rodent discordance shows that there is a decrease in the dose ranges for which further 

testing is optimal when imperfect concordance is factored in. Our analysis also ignores 

the animal welfare concerns, and the latency of cancer. In addition, the predictive value 

of lower tier tests in estimating carcinogenic potency relies on historical data that may not 

accurately reflect the distribution of test results for the untested chemicals.

In addition, we assume that the decision maker is able to regulate based on 

lowered tiered tests without a bioassay result. However, for chemicals already in use, the 

current regulatory structure does not ordinarily allow for regulation of a chemical as a 

carcinogen without either bioassay results or human epidemiological results. To the 

extent that the NBMDM is constrained by the necessity of a test result to regulate, the 

value of testing will increase. In addition, decision makers are often constrained by
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statutory requirements such that maximizing net benefit is not the only criterion for 

taking regulatory action. How much these constraints change the decision to test or not 

will be explored in the following chapter. Another important area for future research is 

further exploration of whether more generic information (i.e., not chemical specific) such 

as animal to human concordance of test results and correlation between toxicity tests is 

more valuable than additional toxicity data for particular chemicals. In other words, are 

research efforts to refine our understanding of relationships between chemicals more 

valuable than a testing program like VCCEP that is geared towards gathering chemical- 

specific information?

The VCCEP treats the decision to require higher tier tests as a purely scientific 

assessment, however, the decision to continue testing is a risk management decision that 

may have significant impacts on health as well as regulatory costs. The peer consultation 

required after each tier of testing is in the spirit of an important National Research 

Council (NRC) recommendation that risk characterization be an "analytic-deliberative" 

process where interested parties have an opportunity to exchange views and 

interpretations of the analyses. However, it falls short of the NRC’s recommendation that 

risk characterization be a "decision-driven activity directed towards informing choices 

and solving problems. "(35:155) The information requirement of a formal VOI analysis may 

be too onerous for many chemicals, however, the general insights gained from these 

illustrative cases may provide some guidance on appropriate action. Though decision 

analytic tools such as VOI can never provide a definitive answer on appropriate actions, 

as this analysis illustrates, it can serve as an important input to the deliberative decision­

making process developed for the VCCEP program.
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Table 3.1: Testing Tiers of the VCCEP

Tier Test(6) Information Estimated Costf33) 
( 2 0 0 0  dollars)

1 Acute oral toxicity (up/down) OR
LD50

-
Acute inhalation toxicity $14,735

In vitro gene mutation: Bacterial reverse mutation assay Qualitative $7,389
Repeated dose toxicity with reproductive and developmental toxicity screens OR

NOAEL
$40,630

Repeated dose oral toxicity AND Reproductive toxicity (1-generation) -
In vitro chromosomal aberrations OR In vivo chromosomal aberrations OR 
In vivo mammalian erythrocyte micronucleus

Qualitative
$15,158

2 90-Day subchronic toxicity in rodents (oral; inhalation) MTD, NOAEL $105,214; $305,507
Reproduction and fertility effects NOAEL $826,676
Prenatal developmental toxicity (two species) NOAEL $88,448

In vivo mammalian bone marrow chromosomal aberrations, OR 
In vivo mammalian erythrocyte micronucleus

Qualitative
$15,158

Immunotoxicity NOAEL $45,887
Metabolism and pharmacokinetics Qualitative $31,650

3 Carcinogenicity OR Potency, $1,259,677
Chronic toxicity/carcinogenicity NOAEL -

Neurotoxicity screening battery NOAEL $ 1 0 0 ,0 0 1

Developmental neurotoxicity NOAEL $168,212
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Figure 3.1: Simplified schematic of the testing decision
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Figure 3.2: Relationship between testing results and human carcinogenic potency
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Table 3.2: Parameters for uncertain input values

Input Distribution Parameter Value Reference

Background tumor rate - l-exp(-a) 0 .0 2 Linkov et al.(19)

Predictive value: P ( P >  0 Mut +) Probability mass 0 .8 Gold et al.(9)

Predictive value: P (  ft > 0 | Mut - ) Probability mass 0.5 Gold et al.(9)

Ratio: K = loglO™ 0  
LZ>50

Normal P k

°K

0.83

0.79

Metzger et al.(11)

• r, MTDRatio: K = -------
LD5 0

Lognormal P\nK

a \nK

-2.3

1.4

Gombar et al.(22)

Likelihood: L (  1
\ Pk MTD ,

Lognormal P \n y In p  CJ,n)’ 
2

1 .2

Taylor et al.(18)

Predictive value: P {P human > 0 1 Prodent >  0 ) Probability mass 0.75 Gold et al.(24)

Predictive value: P { p human = 0 | P r0dent ~ Probability mass 0.75 Gold et al.(24)
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Table 3.3: Estimates of U.S. Average Daily Dose to Rodent Carcinogens

Rodent Carcinogen Dose (mg/day) Dose (mg/kg/day)4

TCDD (1994) 1 .2  x 1 0 '8 1.7 x 10"'°

Chlorobenzilate (1989) 6.4 x 10"6 9.1 x 10'8

Chlorothalonil (1990) 6.4 x 10-6 9.1 x 10'8

Folpet (1990) 1.3 x 10'5 1 .8  x 1 0 '7

Aflatoxin (1984-89) 1 .8  x 10~5 2 .6  x 1 0 '7

PCNB (1990) 1.9 x 10'5 2.7 x 10'7

Lindane (1990) 3.2 x 10'5 4.6 x 10'7

PCBs (1984-86) 9.8 x 10-5 1.4 x 10'6

Captan (1990) 1 .2  x 1 0 -4 1 .6  x 1 0 '6

EDB (before 1984 ban) 4.2 x 10-4 6 .0  x 1 0 '6

Dicofol (1990) 5.4 x 10'4 7.8 x 10~6

Toxaphene(1990) 6 .0  x 1 0 '4 8.5 x 10'6

DDE/DDT (1990) 6 .6  x 1 0 '4 9.4 x 10"6

Carbaryl (1990) 2 .6  x 1 0 -3 3.7 x 10'5

UDMH (1988) 2 .8  x 1 0 -3 4.0 x 10'5

DDE (before 1972 ban) 6.9 x 10'3 9.9 x 10'5

Ethylene thiourea (1990) 9.5 x 10'3 1.4 x 10'4

DDT (before 1972 ban) 1.4 x 10'2 2 .0  x 1 0 ‘4

BHA (1987) 7.0 x 10 1 1 .0  x 1 0 '2

Saccharin (1977) 7.0 x 10° 1 .0  x 1 0 1

Source: Gold et a l.(9)

4 Dose per 70-kg individual
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Table 3.4: Constant input values

Input Symbol Base Case Sensitivity Units Source

Exposure weighted 
average population dose d - 10'9to 101 mg/kg/day Gold et a l.(9)

Value of cancer prevented V $7 million $5 million, $12 million 2000 dollars per 
statistical life Viscusi and Aldy(28)

Efficiency of control k ek 0%, 50%, 99% 0%, 99%;
0%, 1%, 2%,..., 99% percentage Hypothetical

Cost of 99% control C99% $100 million $1 million to $10 billion 2000 dollar per year Hypothetical

Discount rate r 5% 3%, 7% percentage Hahn(30), OMB(32), 
Weinstein et al.(31)

Cost of tier 2 testing Ctier2 $200,000r 2000 dollars per year U.S. e p a (33)

Cost of tier 3 testing Ctier3 $ 1,300,OOOr 2000 dollars per year U.S. e p a (33)
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Figure 3.3: Prior distribution of potency and expected annual cases of cancer (Cases 
A, B, C, and D)
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Figure 3.4: Posterior distribution of potency (Case D)
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Table 3.5: Break point dose of optimal control strategy without further testing 
(Cases A, B, C, and D)

Control
strategies

Break point dose (mg/kg/day)

Case A  Case B  Case C Case D

0% vs. 50% 1.5 x 10'8 7.3 x 10'4 4.3 x 10~4 5.2 x 10~6 3.6 x 10'6

50% vs. 99% 8.8 x 10-8 4.2 x 10'3 2.5 x 10'3 3.0 x 10‘5 2.1 x 10'5
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Figure 3.5: Optimal control decision without further testing and expected value of
information net of testing and delay costs
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Figure 3.6: Expected value of information net of testing and delay costs, control cost 
saved and cancers prevented from tiered testing (Case D)
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Figure 3.7: Optimal testing decision given tier 1 result as a function of control cost 
and exposure (Cases A and D)
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Table 3.6: Sensitivity of the break point dose for optimal testing decision to discount rate, value of cancer prevented, 
qualitative discordance, number of control options and background tumor rate (case D)

Cost of 99% control
0% Control vs. Test Tier 2 

$1 million $100 million $10 billion
Test Tier 2 vs. Control 99%

$1 million $100 million $10 billion
Base Case 2E-08 2E-07 2E-06 4E-07 5E-05 8E-04

Discount Rate = 7% 2E-08 2E-07 2E-06 4E-07 4E-05 7E-04
Discount Rate = 3% IE-08 2E-07 2E-06 6E-07 7E-05 IE-03

VSL = $12 million IE-08 IE-07 2E-06 3E-07 3E-05 2E-04
VSL = $5 million 2E-08 3E-07 2E-06 6E-07 7E-05 7E-05

Qualitative Discordance = 75% 3E-08 2E-07 2E-06 6E-07 7E-05 IE-03
2 Control Options - 4E-07 - - 8E-05 -

100 Control Options - 2E-07 - - 6E-05 -
Background Tumor = 0% - 2E-07 - - 5E-05 -

Background Tumor =  10% - 2E-07 - - 6E-05 -
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Figure 3.8: Sensitivity of optimal control decision without further testing and net
EVSI to value of a cancer case prevented (Case D)
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Table 3.7: Sensitivity of the value of testing and the break point dose for optimal testing decision to random  seed (case D)

Expected value of testing ($ millions) Break Point Dose (mg/kg/day)

1.00E-07
Dose (mg/kg/day) 

1.00E-06 1.00E-05 1.00E-04
0% Control vs. 

Test Tier 2
Test Tier 2 vs. 
Control 99%

Iteration 1 -$0,010 $0.59 $10.0 -$29.5 2.0E-07 5.5E-05
Iteration 2 -$0,010 $0.18 $5.8 -$19.8 3.5E-07 6.0E-05
Iteration 3 -$0,010 $0.32 $7.6 -$21.1 2.0E-07 6.0E-05
Iteration 4 -$0,010 $0.29 $7.4 -$21.9 2.5E-07 6.0E-05
Iteration 5 -$0,010 $0.37 $7.9 -$24.7 2.0E-07 6.0E-05
Iteration 6 -$0,008 $0.53 $8.7 -$30.0 1.5E-07 5.5E-05
Iteration 7 -$0,010 $0.33 $7.7 -$24.0 3.0E-07 6.0E-05
Iteration 8 -$0,009 $0.40 $8.5 -$22.8 2.0E-07 6.0E-05
Iteration 9 -$0,010 $0.28 $7.0 -$21.2 3.0E-07 6.0E-05

Iteration 10 -$0,009 $0.59 $9.4 -$26.2 1.5E-07 5.5E-05
Mean -$0,010 $1.55 $2.4 -$52.7 2.3E-07 5.9E-05

Std Dev $0,000 $0.39 $0.5 $5.3 6.7E-08 2.4E-06
95% lower confidence -$0,010 $1.27 $2.0 -$56.5 1.8E-07 5.7E-05limit o f mean 
95% upper confidencef • • j -$0,010 $1.83 $2.7 -$48.9 2.8E-07 6.0E-05limit of mean
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Selected S-Plus code for evaluating the value of information and optimal testing 
strategies

# clear all previous data objects 
remove(Is())

Assign values to constants for the base case

n.b <- 1000 
n.s <- n.b 
n.cv <- 51 
base.cv <- 26 
high.cv <- 24 
low.cv <- 28

# number of beta to sample
# number of mtd sampled
# number of different cost/vsl ratio values
# index for base case cost/base vsl ratio
# index for base case cost/high vsl ratio
# index for base case cost/low vsl ratio

n.x <- 51 
n.reg <- 3

# number of bioassay outcomes
# number of regulatory control options

p.pos <- c(0.5, 0.8, 0.5, 0.8) # probability that potency is non-zero 
LD50 <- c(8000, 8000, 60, 60) # lethal dose 50 from tier 1
b .tumor 
alpha <- 
m u .Kt <- 
sigma.Kt 
m u .Ks <- 
s igma.Ks 
sigma.s

< -  0 . 0 2  
-log(1-b.tumor) 
0.83 
<- 0.79 
-2.3 
<- 1.4 
-  1 . 2

# background tumor rate
# background tumor parameter for one-hit model
# mean of ratio of log(TD50) to log(LD50)
# st dev of ratio of log(TD50) to log(LD50)
# mean of ratio of MTD to LD50
# st dev of ratio of MTD to LD50
# st dev of ln(l/MTD) given beta

vsl <- c (5,7,12)*10*6 # value of cancer case prevented ($/cancer)
r <- c(3,5,7)/100 # discount rate
low <- 1 # index for sensitivity - "high" case
base < - 2  # index for sensitivity - "base" case
high < - 3  # index for sensitivity - "low" case
pop <- 280*10*6 # total population exposed(persons/year)
cost.99 <-10*seq(6,10,4/(n.cv/3-1)) # cost of 99% control option ($/year)

c .tier2 < - 0.2*10*6 # cost of tier 2 testing (PV $)
c .tier3 < - 1.3*10*6 # cost of tier 3 testing (PV $)
t .tier2 < - 1.5 # time testing & analysis (yrs)
t .tier3 < - 5 # time testing & analysis (yrs)

seed <- 929 # random seed (integer between 0 and 1023)
hold <- 929 # place holder values replaced in "for" loops

n.ones < - rep(l, n.b) # column of n ones
n s .ones < - rep(l, n.s) # column of n.s ones
nx.ones < - rep (1, n.x) # column of n.x ones

Set maximum object size to accommodate largest matrix

size <- (n.b+1)* (n.s)* (n.x)*8 
options(object.size=size)
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# Value of the random seed

set.seed(seed)

Bioassay results - number of rats with tumors, x

x <- seq(0, by=l, length=n.x)

Control efficiency, e (percent)

e <- seq(0, by=0.99/(n.reg-1), length=n.reg)

Ratio: cost of regulating to VSL

cv.99 <- sort(cost.99%*%t(l/c(5,7,12)))/10*6 
q <- -log(1-e(n.reg])/cv.99
cv.ratio <- -log(1-rep(1, n.cv)%*%t(e))/(q%*%t(rep(1, n.reg)))

Decision rule for an unconstrained Bayesian decision maker. 
Objective: maximize expected net societal benefit.

Max.NB <- function (new, old) 
{

ifelse(new-old>0, new, old)
}

Input values for cases A, B, C, and D

M.beta.bar <- rep(hold, 4)
M.beta.pos <- matrix(rep(hold, n.b*4), ncol=4) 
M.mtd <- matrix(rep(hold, n.s*4), ncol=4)
M.bp.dose <- matrix(rep(hold, 6*4), ncol=4)

>r (case in 1:4)

Positive potency, beta (mg/kg/day) '"‘-1

# Distribution of ratio: TD50/LD50 
K <- rnorm(n.b, mu.Kt, sigma.Kt)

# TD50 as a fraction of LD50 
TD50 <- (10^-K)*LD50[case]
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=tfc 
#

# Convert TD5 0 into Beta
beta <- (log(2)-alpha)/TD50 
beta <- sort(beta)

Maximum tolerated dose, MTD (mg/kg/day)

Distribution of ratio: MTD/LD50 (data from Gombar et al. 1991) 
K <- rlnorm(n.s, mu.Ks, sigma.Ks)

MTD as a fraction of LD50 
mtd <- K*LD50[case] 
mtd <- sort(mtd)

Expected value of potency
beta.bar <- p.pos[case]‘mean(beta)

Break Point Dose

bp.dose <- (cv.ratio[low.cv,2]-cv.ratio[low.cv,1])*(-70)
bp.dose <- b p .dose/(e[2]- e [1])/pop
bp.dose <- bp.dose + exp(-alpha)
bp.dose <- log(bp.dose) + alpha
bp.dose <- - bp.dose/beta.bar
dose <- bp.dose

bp.dose <- (cv.ratio[base.cv,2]-cv.ratio[base.cv,1])*(-70)
bp.dose <- b p .dose/(e[2]- e [1])/pop
bp.dose <- bp.dose + exp(-alpha)
bp.dose <- log(bp.dose) + alpha
bp.dose <- - bp.dose/beta.bar
dose <- c(bp.dose, dose)

bp.dose <- (cv.ratio[high.cv,2]-cv.ratio[high.cv,1])*(-70)
bp.dose <- b p .dose/(e[2]- e [1])/pop
bp.dose <- bp.dose + exp(-alpha)
bp.dose <- log(bp.dose) + alpha
bp.dose <- - b p .dose/beta.bar
dose <- c(bp.dose, dose)

bp.dose <- (cv.ratio[low.cv,3]-cv.ratio[low.cv,2])*(-70)
bp.dose <- b p .dose/(e[3]- e [2])/pop
bp.dose <- bp.dose + exp(-alpha)
bp.dose <- log(bp.dose) + alpha
bp.dose <- - bp.dose/beta.bar
dose <- c(bp.dose, dose)

bp.dose <- (cv.ratio[base.cv,3]-cv.ratio[base.cv,2])*(-70)
bp.dose <- b p .dose/(e[3]- e [2])/pop
bp.dose <- bp.dose + exp(-alpha)
bp.dose <- log(bp.dose) + alpha
bp.dose <- - bp.dose/beta.bar
dose <- c(bp.dose, dose)

bp.dose <- (cv.ratio[high.cv,3]-cv.ratio[high.cv,2])*(-70) 
bp.dose <- bp.dose/(e[3]- e [2])/pop 
bp.dose <- bp.dose + exp(-alpha) 
bp.dose <- log(bp.dose) + alpha
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bp.dose <- - b p .dose/beta.bar 
dose <- c(bp.dose, dose)

Store Values

M.beta.bar [case] <- beta.bar 
M.bp.dose[,case] <- dose 
M.mtd[,case] <- mtd 
M.beta.pos [,case] <- beta

# end "case" loop

Exposure weighted average dose (mg/kg/day)

Range dose from 10^-9 to 10^-1 
zl <- 10*seq(-9, by=3/15; length=15) 
z2 <- 10^seq(-6, by=4/80, length=80) 
z3 <- 10^seq(-2, by=l/5, length=6) 
dose <- sort(c(M.bp.dose, zl, z2, z3)) 
n.d <- count.rows(dose)
nd.ones <- rep(l, n.d) # column of n.d ones

header <- c("Case_A", "Case_B", "Case_C", "Case_D") 
dimnames(M.beta.pos) <- list(NULL, header) 
dimnames(M.mtd) <- list(NULL, header)

write.table(M.beta.pos, "beta.txt", sep="\t") 
write.table(M.mtd, "mtd.txt", sep="\t") 
writefdose, "dose.txt", ncol=l)

Testing cost and discount factor

Action after tier 2
df2 <- 1 / (1+r[base])At .tier2
test.cost.2 <- c .tier2*r [base]

Action after tier 3
df3 <- 1/ (1+r[base])*(t.tier2+t.tier3)
test.cost.3 <- c .tier2*r[base] + c .tier3*r[base]*df2

VOI and Optimal Testing for Cases A, B, and C

n <- n.b + 1
M.beta <- matrix(rep(hold, n*4), ncol=4)
M.prob <- matrix(rep(hold, n*4), ncol=4)
M.can <- matrix(rep(hold, n.d*4), ncol=4)
M.EVSI <- matrix(rep(hold, n.d*4), ncol=4)
M.test <- matrix(rep(hold, n.d*n.cv*3), ncol=n.d) 
M.act.O <- matrix(rep(hold, n.d*4), ncol=4)
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for (case in 1:3) 
{

n <- n.b
n.ones <- rep(l, n) 
beta <- M.beta.pos[,case] 
mtd <- M.mtd[,case]

Posterior Probability given MTD

s <- 10*(loglO(1/mtd)-0.4) 
rau.s <- log(beta) - sigma.s*2/2

Brand and Small (1995), equation (20)
Numerator: likelihood of mtd given prior beta
p.post.mtd <- dlnorm(n.ones%*%t(s), meanlog=mu.s%*%t(ns.ones), sdlog=sigma.s) 
p.post.mtd <- matrix(p.post.mtd, nrow=n)

Denominator: sum of likelihood of mtd for all possible beta 
p.post.mtd <- p.post.mtd/(n.ones%*%(t(n.ones)%*%p.post.mtd))

Back out prior probability of beta implied by posterior given mtd 
p.prior <- p.post.mtd%*%ns.ones/n.s

Generate unconditional probability of "s" 
p.uncond.s <- ns.ones/n.s

Adjust values to include zero beta

beta <- c(0, beta) 
n <- n+1
n.ones <- rep(l, n)
p.prior <- c ((1-p.pos [case]), p.prior*p.pos [case])
p.post.mtd <- rbind(t(ns.ones)* (1-p.pos [case]), p.post.mtd*p.pos[case])

"Added" annual risk of cancer above background

R <-(-exp(-alpha-beta%*%t(dose))+exp(-alpha))/70 
R.O <- t(p.prior)%*%R 
R.mtd <- t(p.post.mtd)%*%R

Initial value for summed object in "i" loop 
NB.bio <- matrix(rep(0, n.d*n.s*n.cv), ncol=n.d) 
nb.bio.x <- matrix(rep(0, n .d*n.s*n.cv), ncol=n.d)

Posterior Probability given Bioassay

# Probability of tumor in rodents given MTD 
p.tumor <- 1-exp(-alpha-beta%*%t(mtd))
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for (i in l:n.x) # repeat for each value of test result "x"
{
# Numerator: product of likelihood of "x" given beta|mtd and prob of beta|mtd 

p.post.bio <- dbinom(x[i], 50, p.tumor)
p.post.bio <- matrix(p.post.bio, nrow=n)*p.post.mtd

# Denominator: sum of the numerator for all possible beta 
p.x.mtd <- t(t(n.ones)%*%p.post.bio)

# Posterior probability of beta given "x"
p.post.bio <- p.post.bio/(n.ones%*%t(p.x.mtd))

# = = = = = = = = = = = = = = = = = = = = = = = = = = = =
# NB from Bioassay Information
# = = = = = = = = = = = = = = = = = = = = = = = = = = = =

R.bio <- t(p.post.bio)%*%R

for (j in l:n.cv) # repeat for each cv.ratio 
{# = = = = = = = = = = = = = = = = = =

# NB given mtd and x
#  = = = = = = = = = = = = = = = = = =

# Initial values of expected net benefit: 0% control 
nb.bio <- matrix(rep(0, n.d*n.s), ncol=n.d)

for (k in 2:n.reg) # NB for each regulatory option above 0% 
{
# Net benefit (per capita as a proportion of vsl) 

nb <- R.bio*e[k]*pop - cv.ratio[j,k]
nb.bio <- Max.NB(nb, nb.bio)

} # end "k" for loop (n.reg)
#  = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =

# NB averaged over all possible "x"
#  = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =

zl <- 1+ (j-1)*n.s 
z2 <- j*n.s
nb.bio.x[zl:z2,] <- nb.bio*(p,x.mtd%*%t(nd.ones))

} # end "j" for loop (n.cv)

NB.bio <- NB.bio + nb.bio.x 

} # end "i" for loop (n.x)

# ==============================================
# Initial values for objects in "i" an "j" loops
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =

mat.hold <- matrix(rep(hold, n.d*n.cv), ncol=n.d)
N B .0 <- mat.hold # prior
NB.t <- mat.hold # optimal testing

act.O <- matrix(rep(0, n.d*n.cv), ncol=n.d)
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for (i in l:n.cv) # expected NB for each cv.ratio 
{

# Initial values of expected net benefit: 0% control 
nb.O <- t(rep(0, n.d))
nb.mtd <- matrix(rep(0, n.d*n.s), ncol=n.d)

for (j in 2:n.reg) # NB for each regulatory option above 0% 
{

cost <- cv.ratio[i,j]
# = = = = = = = = = = = = = = = = = = = = = = = =

# NB given only prior info
# = = = = = = = = = = = = = = = = = = = = = = = =

# Net benefit (per capita as a proportion of vsl [base]) 
nb <- R.0*e[j]*pop - cost
act.0[i,] <- ifelse(nb > nb.O, e[j], act.0[i,]) 
nb.O <- Max.NB(nb, nb.O)

# = = = = = = = = = = = = = = = = = = = = = = =

# NB given only mtd info
# = = = = = = = = = = = = = = = = = = = = = = =

# Net benefit (per capita as a proportion of vsl [base]) 
nb <- R.mtd*e[j]*pop - cost 
nb.mtd <- Max.NB(nb, nb.mtd)

} # end "j" for loop (n.reg)

# = = = = = = = = = = = = = = = = = = = =

# Expected net benefit
# = = = = = = = = = = = = = = = = = = = =

# Only prior information 
NB.0[i,] <- nb.0*vsl[base]

# Bioassay
zl <- 1 + (i-1)*n.s 
z2 <- i*n.s
nb.bio <- NB.bio [zl:z2,]

# Tiered Testing
tier2 <- nb.mtd*vsl[base]*df2 - test.cost.2 
tier3 <- nb.bio*vsl[base]*df3 - test.cost.3 
MaxNB <- Max.NB(tier2, tier3)
NB.t[i,] <- t(p.uncond.s)%*%MaxNB

} # end "i" for loop (n.cv)

# = = = = = = = = = = = = = = = = = = = = = = = =

# Optimal Testing Decision
# = = = = = = = = = = = = = = = = = = = = = = = =

test.tl <- ifelse(NB.t > NB.O, 1, act.O)
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Store Values

zl <- (case-1)*n.cv + 1 
z2 <- case*n.cv

M. test [zl:z2,] <- test.tl 
M.beta[,case] <- beta 
M.prob[,case] <- p.prior 
M.cant,case] <- pop*R.O
M .EVSI[,case] <- N B .t[base.cv,] - N B .0[base.cv,] 
M.act.0[,case] <- act.0[base.cv,]

# end "case" loop

zl <- 1 
z2 <- n.cv
test.A <- M.test[zl:z2,]

zl <- l+z2
z2 <- z2+n.cv
test.B <- M .test[zl:z2,]

zl <- l+z2
z2 <- z2+n.cv
test.C <- M.test [zl:z2,]

VOI and sensitivity for Case D

n <- n.b
n.ones <- rep(l, n) 
beta <- M.beta.pos[,4] 
mtd <- M.mtd[,4]

Posterior Probability given MTD

s <- 10x (loglO(1/mtd)-0.4) 
mu.s <- log(beta) - sigma.s*2/2
p.post.mtd <- dinorm(n.ones%*%t(s), meanlog=mu.s%*%t(ns.ones), sdlog=sigma. 
p.post.mtd <- matrix(p.post.mtd, nrow=n)
p.post.mtd <- p.post.mtd/(n.ones%*%(t(n.ones)%*%p.post.mtd)) 
p.prior <- p.post.mtd%*%ns.ones/n.s 
p.uncond.s <- ns.ones/n.s

Adjust values to include zero beta

beta <- c(0, beta) 
n <- n+1
n.ones <- rep(l, n)
p.prior <- c ((1-p.pos [4]), p.prior*p.pos[4])
p.post.mtd <- rbind(t(ns.ones)* (1-p.pos[4]), p.post,mtd*p.pos [4])
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# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =

# "Added" annual risk of cancer above background from exposure
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =

R <- (-exp(-alpha-beta%*%t(dose))+exp(-alpha))/70 
R.O <- t(p.prior)%*%R 
R.mtd <- t(p.post.mtd)%*%R

# = = = = = = = = = = = = = = = = = = =

# Objects in "i" loop
#  = = = = = = = = = = = = = = = = = = =

NB.bio.x <- matrix(rep(hold, n .d*n.cv*n.s), ncol=n.d) 
NB.bio <- matrix(rep(0, n.d*n.s*n.cv), ncol=n.d) 
cancer.bio <- matrix(rep(0, n.d*n.s), ncol=n.d) 
cost.bio <- matrix(rep(0, n.d*n.s), ncol=n.d)

#  = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =

# Posterior Probability given Bioassay
#  = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =

p .tumor <- 1-exp(-alpha-beta%*%t(mtd))

for (i in l:n.x) # repeat for each value of test result "x" 
{
p.post.bio <- dbinom(x[i], 50, p.tumor)
p.post.bio <- matrix(p.post.bio, nrow=n)*p.post.mtd
p.x.mtd <- t(t(n.ones)%*%p.post.bio)
p.post.bio <- p.post.bio/(n.ones%*%t(p.x.mtd))
R.bio <- t(p.post.bio)%*%R

for (j in l:n.cv) # repeat for each cv.ratio 
{
# = = = = = = = = = = = = = = = = = =

# NB given mtd and x
#  = = = = = = = = = = = = = = = = = =

nb.bio <- matrix(rep(0, n.d*n.s), ncol=n.d)

for (k in 2:n.reg) # NB for each regulatory option above 0% 
{

nb <- R.bio*e[k]*pop - cv.ratio[j,k] 
nb.bio <- Max.NB(nb, nb.bio)

} # end "k" for loop (n.reg)

# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =

# NB averaged over all possible "x"
#  = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =

zl <- 1+(j-1)*n.s 
z2 <- j*n.s
NB.bio.x[zl:z2,] <- n b .bio*(p.x.mtd%*%t(nd.ones))

} # end "j" for loop (n.cv)

NB.bio <- NB.bio + NB.bio.x
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# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =

# Cancers prevented and costs saved given bioassay (base case cost)
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =

nb.bio <- matrix(rep(0, n.d*n.s), ncol=n.d) 
cancer.bio.x <- matrix(rep(0, n.d*n.s), ncol=n.d) 
cost.bio.x <- matrix(rep(0, n.d*n.sj, ncol=n.d)

for (h in 2:n.reg)
{

cancer <- R.bio*e[h]*pop 
cost <- cv.ratio[base.cv, h] 
nb <- cancer - cost
cancer.bio.x <- ifelse(nb > nb.bio, cancer, cancer.bio.x) 
cost.bio.x <- ifelse(nb > nb.bio, cost, cost.bio.x) 
nb.bio <- Max.NB(nb, nb.bio)

} # end "h" for loop (n.reg)

cancer.bio <- cancer.bio + cancer.bio.x*(p.x.mtd%*%t(nd.ones)) 
cost.bio <- cost.bio + cost.bio.x*(p.x.mtd%*%t(nd.ones))

} # end "i" for loop (n.x)

# Initial values for objects in "i" an "j" loops
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =

mat.hold <- matrix(rep(hold, n.d*n.cv), ncol=n.d)
NB.perfect <- mat ..hold # perfect
NB.O <- mat.hold # prior
NB.b <- mat.hold # optimal testing - base case
NB.vh <- mat.hold # optimal testing - high vsl
NB.vl <- mat.hold # optimal testing - low vsl
NB.dh <- mat.hold # optimal testing - high discount rate
NB.dl <- mat.hold # optimal testing - low discount rate

act.0 <- matrix(rep(0, n.d*n.cv), ncol=n.d)

for (i in l:n.cv) # expected NB for each cv.ratio 
{
nb.O <- t(rep(0, n.d))
nb.mtd <- matrix(rep(0, n.d*n.s), ncol=n.d) 
nb.perfect <- matrix(rep(0, n.d*n), ncol=n.d)

#  = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =

# NB from Prior, MTD, and Perfect Information
#  = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =

for (j in 2:n.reg) # NB for each regulatory option above 0%
{

cost <- cv.ratio [i,j]
# = = = = = = = = = = = = = = = = = = = = = = = =

# NB given only prior info
# = = = = = = = = = = = = = = = = = = = = = = = =

nb <- R.0*e[j]*pop - cost
act.0[i,] <- ifelse(nb > nb.O, e[j], act.0[i,]) 
nb.O <- Max.NB(nb, nb.O)
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NB given only mtd info

nb <- R.mtd*e[j]*pop - cost 
nb.mtd <- Max.NB(nb, nb.mtd)

NB given perfect info

nb <- R*e[j]*pop - cost
nb.perfect <- Max.NB(nb, nb.perfect)

# end "j" for loop (n.reg)

Expected net benefit

NB . 0 [ i ,] <- nb.O
NB.perfect [i,] <- t(p.prior)%*%nb.perfect

NB from optimal tiered testing

zl <- l+(i-l)*n.s 
z2 <- i*n.s
nb.bio <- NB.bio[zl:z2,]

# Base case
df2 <- 1/ (1+r [base] ) '"'t. tier2
test.cost.2 <- c .tier2*r[base]
df3 <- 1/ (1+r[base])A (t.tier2+t.tier3)
test.cost.3 <- c .tier2*r[base] + c .tier3*r[base]*df2

tier2 <- nb.mtd*vsl[base]*df2 - test.cost.2 
tier3 <- nb.bio*vsl[base]*df3 - test.cost.3 
MaxNB <- Max.NB(tier2, tier3)
NB.b[i,] <- t(p.uncond.s)%*%MaxNB

# Sensitivity: Low VSL
tier2 <- nb,mtd*vsl[low]*df2 - test.cost.2 
tier3 <- nb.bio*vsl[low]*df3 - test.cost.3 
MaxNB <- Max.NB(tier2, tier3)
NB.vl[i,] <- t(p.uncond.s)%*%MaxNB

# Sensitivity: High VSL
tier2 <- nb.mtd*vsl[high]*df2 - test.cost.2 
tier3 <- nb.bio*vsl[high]*df3 - test.cost.3 
MaxNB <- Max.NB(tier2, tier3)
NB.vh[i,] <- t(p.uncond.s)%*%MaxNB

# Sensitivity: Discount Rate High 
df2 <- 1/(1+r[high])At .tier2 
test.cost.2 <- c .tier2*r[high]
df3 <- 1 / (1+r[high])*(t.tier2+t.tier3)
test.cost.3 <- c .tier2*r[high] + c .tier3*r[high]*df2

tier2 <- nb.mtd*vsl[base]*df2 - test.cost.2 
tier3 <- nb.bio*vsl[base]*df3 - test.cost.3
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MaxNB <- Max.NB(tier2, tier3) 
NB.dh[i,] <- t(p.uncond.s)%*%MaxNB

# Sensitivity: Discount Rate Low 
df2 <- 1/ (1+r [low] ) ■'t .tier2 
test.cost.2 <- c .tier2*r[low] 
df3 <- 1 / (1+r [low])x (t.tier2+t.tier3) 
test.cost.3 <- c .tier2*r[low] + c .tier3*r[low]*df2

tier2 <- nb.mtd*vsl[base]*df2 - test.cost.2 
tier3 <- nb.bio*vsl[base]*df3 - test.cost.3 
MaxNB <- Max.NB(tier2, tier3)
NB.dl[i,] <- t(p.uncond.s)%*%MaxNB

} # end "i" for loop (n.cv)

Value of Information and optimal testing decision after Tier 1

# Base case
df2 <- 1/(1+r[base])At,tier2
test.cost.2 <- c .tier2*r[base]
df3 <- 1/ (1+r [base])*(t.tier2+t.tier3)
test.cost.3 <- c .tier2*r [base] + c .tier3*r[base]*df2

EV.O <- N B .0[base.cv,]*vsl[base]
EV.tiered <- NB.b[base.cv,]
EV.perfect <- NB.perfect[base.cv,]*vsl[base]

EVPI <- EV.perfect - EV.O 
EVSI <- EV.tiered - EV.O

tierl <- N B .0*vsl[base]
test.tl <- ifelse(NB.b > tierl, 1, act.O)

# Sensitivity: Discount Rate (high) 
test.dh <- ifelse(NB.dh > tierl, 1, act.O)
EVSI.dh <- NB.dh - tierl

# Sensitivity: Discount Rate (low) 
test.dl <- ifelse(NB.dl > tierl, 1, act.O)
EVSI.dl <- NB.dl - tierl

# Sensitivity: VSL (high) 
tierl <- N B .0*vsl[high]
test.vh <- ifelse(NB.vh > tierl, 1, act.O)
EVSI.vh <- NB.vh - tierl

# Sensitivity: VSL (low) 
tierl <- N B .0*vsl[low]
test.vl <- ifelse(NB.vl > tierl, 1, act.O)
EVSI.vl <- NB.vl - tierl
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# Expected cancers prevented and costs saved (base case cost)
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =

# Initial values: 0% control 
cancer.0 <- rep(0, n.d) 
cost.O <- rep(0, n.d) 
nb.O <- rep(0, n.d)

cancer.mtd <- matrix(rep(0, n.d*n.s), ncol=n.d) 
cost.mtd <- matrix(rep(0, n.d*n.s), ncol=n.d) 
nb.mtd <- matrix(rep(0, n.d*n.s), ncol=n.d)

for (i in 2:n.reg) # NB for each regulatory option above 0%
{

cost <- cv.ratio[base.cv, i]

cancer <- R.0*e[i]*pop 
nb <- cancer - cost
cancer.0 <- ifelse(nb > nb.O, cancer, cancer.0) 
cost.O <- ifelse(nb > nb.O, cost, cost.O) 
nb.O <- Max.NB(nb, nb.O)

cancer <- R.mtd*e[i]*pop 
nb <- cancer - cost
cancer.mtd <- ifelse(nb > nb.mtd, cancer, cancer.mtd) 
cost.mtd <- ifelse(nb > nb.mtd, cost, cost.mtd) 
nb.mtd <- Max.NB(nb, nb.mtd)

} # end "i" for loop (n.reg)

zl <- 1 + (base.cv-1)*n.s 
z2 <- base.cv*n.s
tier2 <- n b .mtd*vsl[base]*df2 - test.cost.2
tier3 <- NB.bio[zl:z2,]*vsl[base]*df3 - test.cost.3

cancer.test <- t(p.uncond.s)%*%ifelse(tier3 > tier2, cancer.bio*df3, 
cancer.mtd*df2)

cost.test <- t(p.uncond.s)%*%ifelse(tier3 > tier2, cost.bio*df3, 
cost.mtd*df2) 

test.mtd <- ifelse(tier3 > tier2, 1, 0)

EV.cancer <- (cancer.test - cancer.0)
EV.cost <- (cost.O - cost.test)*vsl[base]

# Store Values
# = = = = = = = = = = = =

test.D <- test.tl 
M.beta[,4] <- beta 
M.prob[,4] <- p.prior 
M.can[,4] <- R.0*pop 
M .EVSI[,4] <- EVSI 
M.act.0[,4] <- act.0[base.cv,]
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Chapter 4: The Value of Tiered Testing to a Constrained Decision Maker
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1. Introduction

The previous chapter explored how carcinogenicity data collected through the 

VCCEP may be used to inform risk management decisions, and it derived the optimal 

stopping criteria for a chemical where Tier 1 screening data have been collected, from the 

perspective of a net benefits maximizing decision maker. We assumed that the decision 

maker is able to regulate based on lower tier tests without a bioassay result. However, for 

chemicals already in use, the current regulatory structure does not ordinarily allow for 

regulation of a chemical as a carcinogen without either bioassay results or human 

epidemiological results. To the extent that a decision maker is constrained by the 

necessity of a bioassay test result to regulate, the value of testing will tend to increase 

since an increase in net benefits can only be derived after testing. In addition, decision 

makers are often constrained by statutory requirements such that maximizing net benefit 

is not the sole (or even primary) criterion for taking regulatory action.

In this chapter we examine the differences in optimal testing decisions between a 

net benefit maximizing decision maker and a constrained decision maker, defined as one 

who cannot regulate by analogy (i.e., without "hard" data). The analysis quantifies the 

estimated loss in societal welfare from restricting regulators to act only after bioassay 

data on a specific chemical is available. In addition, it will quantify the differences in net 

benefits as well as cancers prevented and control costs for three decision criteria: 

maximizing societal net benefits, ensuring maximum exposure control while net benefits 

are positive, and controlling to the maximum extent technologically feasible while the 

lifetime risk of cancer exceeds 10'6.
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2. Methods

2.1 Decision Model

All previous value of information analyses on toxicological testing assumed the 

"traditional" expected net benefit maximizing decision maker (NBMDM),(1'4) and this is 

the common perspective taken in most applications as discussed in Chapter 2. The 

NBMDM regulates a chemical based on a subjective prior assessment of potency updated 

by indirect measures in addition to "hard" data from animal bioassay, and chooses a level 

of regulation that will maximize net societal benefit. In practice, either bioassay results 

or human epidemiological results are necessary for making regulatory decisions for 

suspected carcinogens. Figure 4.1 represents a simplified schematic of the decision to 

require the next level of testing for an unconstrained NBMDM and a constrained decision 

maker (CDM). For the CDM, each level of testing refines the estimate of potency, but 

no control actions can be taken based on presumed carcinogenicity until a bioassay result 

is in hand (i.e., assuming that insufficient epidemiological data are available). Therefore, 

each decision to stop testing yields no costs or benefits other than testing costs already 

incurred.

In this analysis, we compare optimal testing strategies for three different types of 

CDMs to the Unconstrained NBMDM. All three must first have Tier 3 test results before 

they are allowed to take regulatory action, but differ in their decision criterion given the 

constraint. Like the unconstrained NBMDM, the first CDM (CDM-Max) chooses the 

control option that maximizes the annualized net benefit for each control option k:

et vR n-ck 
(1 + r)'
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where

• £k is the control efficiency for regulatory strategy k (proportion),

• v is the value of a case of cancer prevented (2000 U.S. dollars),

• R is the average annual risk of cancer to population (probability),

• n is the population exposed (persons/year),

• Q is the annualized cost of regulatory control (2000 U.S. dollars/year).

• r is the discount rate (percentage), and

• f is the delay in action from testing (years).

The expected net benefit from testing is the difference between the expected net benefit 

from the optimal control option given test information and the annualized cost of testing.

For CDM-Max, since no action can be taken without bioassay test result, the prior action 

is always zero, and therefore net benefits are always zero. Therefore, for CDM-Max, the 

net benefit of testing represents the net value of information. This decision maker will 

conduct Tier 2 tests as long as the net value of information is positive.

The second CDM (CDM-Pos) chooses the maximum control level available that 

will still yield positive net benefits (i.e., ensure that benefits justify costs). If only two 

control options are available (no control vs. control), the optimal action for this decision 

maker is identical to that of the NBMDM. However, as more control options become 

available, the greater the deviation in the optimal action. CDM-Pos, like CDM-Max, will 

test Tier 2 if the expected net value of information is positive.

The third CDM (CDM-Risk) regulates based only on estimates of risk. In 

general, an acceptable level of elevation in lifetime cancer risk in the regulatory context 

is considered to be one in a million, though different levels have been used in regulatory
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Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

decision making.(5) Here we assume that this decision maker will control exposures to

the maximum extent technologically feasible, until expected lifetime risk at or below 10'

6. We further assume that after Tier 1 CDM-Risk will test Tier 2 if the 99th percentile

In this analysis, we use the same assumptions about modeling the control 

decisions and costs as we used in Chapter 3 with one important difference. In the base 

case analysis, instead of using three levels of control as we used in chapter 3, here we 

examined the case where ten levels of control are available: 0%, 11%, 22%, 33%, 44%, 

55%, 66%, 77%, 88%, and 99%. We decided to use more levels of control to better 

illustrate the differences in the net benefits and optimal testing decision for the different 

CDMs. We have not evaluated in either chapter the option of completely banning the 

use of a chemical (i.e., 100% control).

2.2 Risk Model

We model the lifetime risk of developing cancer the same as in Chapter 3 using a 

one-hit model that assumes the risk of tumor is equal to the risk of developing cancer at 

an unspecified site:

value of the distribution of lifetime risk implied by Tier 1 test results exceeds 10'6.

(2)

where

• l-exp(-a) represents the background tumor rate,

• p  is the carcinogenic potency (mg/kg/day)’1, and

• exposure weighted average dose d (mg/kg/day).
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The annual risk of cancer above the background level, R, is estimated by dividing the 

lifetime risk above the background rate by 70 years/lifetime, the approximate human life 

expectancy:

In this analysis we assume the uncertainty faced by the decision maker relates to 

the true value of carcinogenic potency, P, and the potential results of testing. All other 

input values are assumed to be known with certainty. The uncertain input values were 

generated using the random sampling function in S-Plus 2000. Table 3.2 in the previous 

chapter summarizes the parameters for distributions the distributions used to characterize 

uncertainty. Using the same methods outlined in the previous chapter, we model the prior 

probability of potency as a sum of a probability mass at zero potency (i.e., not a 

carcinogen) and a continuous parametric distribution for positive potency based on Tier 1 

test results for LD50 and mutagenicity. Based on the Tier 1 information, we predict the 

likely Tier 2 test results using simulation and consider all possible bioassay outcomes to 

calculate the posterior distributions for potency for each information scenario (See 

previous chapter for details).

2.3 Illustrative Case

For this chapter we use the hypothetical case D from the previous chapter, which 

assumes that the chemical of interest tests positive in the mutagenicity test and has a 

relatively high acute toxicity (LD50 of 60 mg/kg), to illustrate the approach. Test results 

for this case imply an upper bound value of expected potency since an LD50 of 60 mg/kg 

correspond to the 5th percentile of LD50 values reported in Gombar et al.(6) Since it

(3)
70
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represents an upper bound of potential Tier 1 results, the results will represent an upper 

bound for the risk of cancer given a level of exposure and the benefits from control.

Table 4.1 summarizes the base case values of constant inputs and the range of

values used in the sensitivity analysis. For all cases, we evaluate the VOI for exposure

0 1weighted average doses ranging from 10' to 10' mg/kg/day. This range corresponds to 

the range of average U.S. population exposures for approximately 18 of the 20 rodent 

carcinogens from Table 3.3 of the previous chapter.'(7) The value of information is 

calculated using the procedures explained in the previous chapter for a range of values of 

exposure weighted average dose ( d ), regulatory options, costs of control, and dollar 

value of a cancer case avoided (See appendix for the complete S-Plus code).

3. Results

3.1 Base Case Analysis

Figure 4.2(a) plots the optimal regulatory action for the unconstrained NBMDM 

given only Tier 1 information for the base case assumptions that the cost function is 

quadratic, the cost of 99% control is $100 million per year, the value of a cancer case 

avoided is $7 million, and the discount rate is 5%. The plot shows that given Tier 1 test 

results of positive mutagenicity and high acute toxicity (defined as an LD50 of at least 60 

mg/kg), the optimal prior action is to not control for exposure weighted doses below 

2.6xl0‘6 mg/kg/day and 99% control becomes optimal at 5.5xl0'5 mg/kg/day.

Figure 4.2 (b) plots the expected value of information for the unconstrained 

NBMDM from testing Tier 2 net of testing and delay costs for the base case. The cost of 

delay is the opportunity cost of delaying action while tests are conducted and results
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analyzed. Here, the greater the discount rate, the greater the opportunity cost. The plot 

shows that the discounted annual expected net benefits peaks at the exposure weighted 

dose of 7.3xl0'6 mg/kg/day and a value of $11 million per year, where the optimal prior

n

action is to control at 88%. The value of testing is positive between 1.7x10' mg/kg/day, 

where the optimal prior action is no control, and 3.2x1 O'5 mg/kg/day, where the optimal 

prior action is to control at 88%. So the optimal testing decision given Tier 1 information
n

is no control when the exposure weighted dose is below 1.7x10' mg/kg/day, test Tier 2 if 

it is between 1.7xl0'7 mg/kg/day and 3.2xl0'5 mg/kg/day, control at 88% if it is between 

3.2xl0‘5 mg/kg/day and 5 .5x l05 mg/kg/day, and control at 99% if it is above 5.5xl0'5 

mg/kg/day.

Figure 4.2 (c) shows the optimal testing strategy for the unconstrained NBMDM 

given Tier 1 information varying the cost of 99% control from $1 million per year to $10 

billion per year. For a high cost of control and low exposure weighted dose, the optimal 

action is to not do anything. For low cost of control and high exposure weighted dose, 

the optimal action is to control at 88% or 99%, without gathering any addition testing 

information. Although collecting additional toxicological information may help the 

NBMDM make a better control decision, the cost of delaying action combined with the 

testing cost is sufficiently high that for these combinations of control cost and exposure, 

collecting additional information is not optimal. In most cases, the cost of control plays a 

key role in determining whether Tier 2 testing is optimal.

Figure 4.3 compares the optimal testing strategy given Tier 1 for the 

unconstrained NBMDM and the three different CDMs for the base case varying the cost 

of 99% control from $1 million per year to $10 billion per year. The frontier for the
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decision of no control versus test Tier 2 is nearly identical for (a) the unconstrained 

NBMDM, (b) the CDM who maximizes net benefits (CDM-Max), and (c) the CDM who 

ensures that benefits justify costs (CDM-Pos). However, CDM-Risk, who regulates 

based only on expected risk, is insensitive to control cost and therefore tests Tier 2 when 

the dose indicates that the 99th percentile of risk based on Tier 1 results exceeds 10'6 

lifetime risk of cancer. Thus, CDM-Risk, a “Risk-only” decision maker (in the context of 

Thompson and Graham(8)) does not take advantage of opportunities to reduce risks when 

control costs are low, but the lifetime risk of cancer is lower than 10'6. Since none of the 

CDMs are able to regulate without Tier 3 information, Tier 2 testing is optimal for all 

exposure weighted dose to the right of the frontier.

Figure 4.4 (a) plots the foregone expected net benefits for the base case from the 

constraint requiring Tier 3 information for regulatory action. The difference in net 

benefits between the unconstrained NBMDM and the CDMs grows somewhat 

proportionally with exposure weighted dose (note that the x axis is on a log scale, while 

the y axis is linear), such that differences in net benefits range from $0 to nearly $2 

billion per year. The monotonic increase in the difference with increase in dose is due to 

the increase in opportunity cost of waiting to act; though the optimal action is to control 

without testing, all three CDMs must delay action by 6.5 years for both the Tier 2 and 

Tier 3 tests results to be collected and analyzed before taking regulatory action. Since the 

Case D represents an upper bound of Tier 1 test results, an exposure weighted dose of 10" 

3 mg/kg/day implies a little over 1000 expected annual cases of cancer, so the net benefits 

from controlling at 99% are $7.2 billion. However, discounting the net benefits after 6.5 

years at 5% yields discounted net benefits of $5.2 billion, for a difference of nearly $2
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billion in net benefits lost per year. Figure 4.4 (b) compares the foregone expected net 

benefits between the three CDMs. For low doses where the optimal action is to not 

control for all CDMs, and high doses where the optimal action is to control at 99% for all 

CDMs, the difference is minimal. However, the difference grows to a maximum of 

nearly $17 million per year for the CDM-Risk and $7 million per year for the CDM-Pos 

who ensures positive net benefits.

Figure 4.5(a) plots the difference in expected cancers prevented for the NBMDM 

and the three CDMs discounted to account for timing. The plot shows that the 

proportional decreases in cancer cases saved drive the results in Figure 4.4(a) and range 

from close to 0 to more than 250 cases of cancers, and the differences between CDMs are 

difficult to see. Figure 4.5(b) compares the difference in expected number of cancers 

prevented between the CDMs. Here the y-axis ranges in value from 0 to 1.5 cases of 

cancers. It shows that between, 1.7xl07 mg/kg/day and 3.4xl0'6 mg/kg/day, the CDM- 

Risk acts in a way that yields less cancer cases prevented than the CDM-Max. On the 

other hand, CDM-Pos almost always prevents more cancer cases than the CDM-Max.

Figure 4.6(a) plots the difference in discounted expected control costs incurred for 

the NBMDM compared to the three CDMs. CDM-Pos and CDM-Risk have higher 

control costs for a range of doses since higher levels of control would be required under 

these two decision criteria. However, the costs drop when the optimal action for the 

unconstrained NBMDM is to control now, while the costs for the CDMs are always 

incurred 6.5 years in the future after all of the testing and analysis have been completed. 

Control costs are lowest for CDM-Max compared to CDM-Pos and CDM-Risk in almost 

all cases since these control costs are always incurred 6.5 years in the future.
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3.2 Sensitivity Analysis

Table 4.2 reports the sensitivity of the estimated expected net benefits to changes 

in value of cancer prevented and discount rate for four levels of exposure weighted dose: 

1CT6,10 '5, 10 4, and 10'3 mg/kg/day. Table 4.3 reports the sensitivity of the break point 

dose for the decision not to control versus test Tier 2 for all decision makers, and for the 

decision to test Tier 2 versus control now (at either 88% or 99%) for the unconstrained 

NBMDM to changes in value of cancer prevented and discount rate assuming a cost of 

99% control of $100 million per year.

Increasing the value placed on preventing cancer should increases the net benefits 

from testing since the benefits of testing and subsequent control action in preventing 

cancers would increase in value. As table 4.2 shows, increasing the value from $7 

million to $12 million increases net benefit of testing for all decision makers and all 

exposure levels except for a small decrease for CDM-Risk at 10~6 mg/kg/day (note that 

the table present expected net benefits of testing, not the expected value of information). 

Similarly, decreasing the value from $7 million to $5 million decreases the net benefits of 

testing.

Since the expected net benefit of testing is the value of information for the CDMs, 

decreasing the value of cancer prevented from $7 million to $5 million should make 

testing optimal for a larger range of exposure levels for the CDM-Max and CDM-Pos.

As Table 4.3 shows, the increase shifts the break point dose for no control versus testing 

slightly to the right, while increasing the value to $12 million shifts the frontiers slightly 

to the left. By definition, the testing strategy of CDM-Risk is not affected by changes in 

the value of cancer prevented. For the unconstrained NBMDM, the impact of the change
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on optimal strategy is ambiguous since an increase in the value will increase the net 

benefits from testing as well as taking action now. As Table 4.3 shows, in this analysis 

increasing the value shifts both break point dose values to the left, and decreasing the 

value shifts both the break point dose values to the right. For the lower range of exposure 

levels, the impact of the change is driven by the increase in value of testing since the 

optimal action without testing is no control, which yields zero benefits. On the other 

hand, at the higher range of exposure, the cost of waiting to act greatly increases with 

increases in the value of cancer prevented such that controlling now becomes more 

valuable.

The discount rate affects the annualized cost of testing as well as the cost of 

waiting to take action. Decreasing the discount rate decreases the annualized cost and the 

foregone net benefits from waiting such that the value of testing tier 2 should become 

larger, and testing will be the optimal action for a larger range of exposure levels. As 

Table 4.2 shows, decreasing the discount rate increases the net benefits of testing for all 

decision makers and all exposure levels (except for a small decrease for CDM-Risk at 10' 

6 mg.kg/day). Likewise, increasing the discount rate decreases net benefits.

As Table 4.3 shows, decreasing the discount rate from 5% to 3% has only a small 

impact on the break point dose for the decision not to control versus testing Tier 2, with a 

slight shift to the left for CDM-Pos. Meanwhile, changing the discount rate from 5% to 

7% shifts the break points to the right (except for CDM-Risk). Changing the discount 

rate from 5% to 3% creates a noticeable shift to the right in the break point dose for 

testing Tier 2 versus control now for the unconstrained NBMDM. Likewise, changing 

the rate from 5% to 7% creates a shift to the left in the break point dose.
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5. Discussion

The analysis shows that sub-optimal testing using various decision criteria for the 

most part lead to a net gain to society compared to doing nothing (i.e., no testing and no 

control), even for the risk only criteria. However, for some ranges of dose and costs, the 

expected net benefit from a societal perspective of using the approach taken by CDM- 

Risk (a “Risk only” approach) is negative. In addition, such a criterion misses out on 

cost-effective interventions to reduce risks below the threshold.(8) On the other hand, 

ensuring that net benefits are positive (CDM-Pos), or better yet maximized (CDM-Max), 

allows for these cost-effective investments. Though the net benefits may be positive, 

there are large differences in net benefits between these three criteria for the "middle" 

range of exposure levels where the optimal actions differ.

Though we are not worse off in the sense that societal net benefits are not 

negative, we are not doing as well as we could be by restricting a regulator’s ability to 

control without bioassay information. The restriction is most burdensome when the level 

of exposure is high since the loss to society between the constrained and unconstrained 

decision makers grows proportionally with exposure weighted dose. For some classes of 

chemicals (e.g., pesticides and pharmaceuticals), the burden of proof is on manufacturers 

to show safety before it is released for general use. For potentially highly toxic and high 

exposure chemicals, this analysis shows that this approach makes sense.
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Figure 4.1: Simplified schematic of the testing decision
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Table 4.1: Constant input values

Input Symbol Base Case Sensitivity Units Source
Exposure weighted average 
population dose d 10'9 to 10‘3 mg/kg/day Gold et a l .(7)

Value of cancer prevented V $7 million $5 million, 
$12 million

2000 dollars per 
statistical life Viscusi and Aldy(9)

Efficiency of control k ek
0%, 11%, 22%,.. 
99%

’ • 5 percentage Hypothetical

Cost of 99% control C99% $100 million $1 million to $10 
billion 2000 dollar per year Hypothetical

Discount rate 5%
Hflhn(10) DMR(11)

r 3%, 7% percentage Weinstein et al.(12)
Cost of tier 2 testing Ctier2 $200,000r 2000 dollars per year U.S. e p a (13)
Delay in action from tier 2 
testing hier2 1.5 years U.S. e p a (13)

Cost of tier 3 testing C tierS $ 1,300,OOOr 2000 dollars per year U.S. e p a (13)
Delay in action from tier 3 
testing hier3 5 years U.S. e p a (13)
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Figure 4.2: Unconstrained Net Benefits Maximizing Decision Maker (NBMDM)
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Figure 4.3: Optimal testing strategy given tier 1
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Figure 4.4: Foregone expected net benefits from regulatory restrictions
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Figure 4.5: Difference in expected number of cancers prevented
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Figure 4.6: Difference in expected control costs incurred

A. Compared to an unconstrained NBMDM
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Table 4.2: Sensitivity of expected net benefits to changes in value of cancer prevented and discount rate

Expected value of net benefits ($/year)for different values o f exposure weighted average dose (mg/kg/day)
High VSL Low Discount Rate Base Case High Discount Rate Low VSL

VSL $12 million $7 million $7 million $7 million $5 million
Discount Rate 5% 3% 5% 7% 5%

10'6 (mg/kg/day)
Unconstrained $3.07 million $1.37 million $1.20 million $1.06 million $0.63 million

Maximize Net Benefits $3.01 million $1.37 million $1.19 million $1.03 million $0.63 million
Positive Net Benefits $2.17 million $0.91 million $0.78 million $0.68 million $0.38 million

Risk Only -$0.19 million -$0.12 million -$0.11 million -$0.10 million -$0.08 million
10'5 (mg/kg/day)

Unconstrained $91.0 million $47.9 million $45.1 million $43.0 million $28.6 million
Maximize Net Benefits $79.3 million $46.1 million $40.7 million $35.9 million $26.2 million

Positive Net Benefits $72.8 million $40.7 million $35.9 million $31.7 million $22.6 million
Risk Only $46.0 million $30.4 million $26.8 million $23.7 million $19.1 million

10'4 (mg/kg/day)
Unconstrained $1,106 million $603 million $603 million $603 million $402 million

Maximize Net Benefits $828 million $529 million $467 million $413 million $324 million
Positive Net Benefits $822 million $522 million $460 million $407 million $317 million

Risk Only $779 million $515 million $455 million $402 million $325 million
10'3 (mg/kg/day)

Unconstrained $12,424 million $7,206 million $7,206 million $7,206 million $5,118 million
Maximize Net Benefits $9,059 million $5,960 million $5,260 million $4,653 million $3,741 million

Positive Net Benefits $9,058 million $5,959 million $5,258 million $4,652 million $3,739 million
Risk Only $9,012 million $5,957 million $5,257 million $4,650 million $3,755 million
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Table 4.3: Sensitivity of the break point dose to changes in value of cancer prevented and discount rate

Break Point Dose (mg/kg/day) fo r  testing decision after Tier 1

High
VSL

Low
Discount

Rate
Base
Case

High
Discount

Rate
Low
VSL

VSL $12 million 
Discount Rate 5%

$7 million
3%

$7 million 
5%

$7 million 
7%

$5 million 
5%

No control vs. Test 
Tier 2

Unconstrained 1.1E-07 1.7E-07 1.7E-07 2.2E-07 2.8E-07
Maximize Net 

Benefits 1.4E-07 1.7E-07 1.7E-07 2.2E-07 2.8E-07
Positive Net 

Benefits 1.4E-07 1.7E-07 2.2E-07 2.8E-07 3.5E-07
Risk Only 7.0E-07 7.0E-07 7.0E-07 7.0E-07 7.0E-07

Test Tier 2 vs. 
Control now

Unconstrained 1.9E-05 7.7E-05 3.2E-05 2.4E-05 3.8E-05
Maximize Net 

Benefits NA NA NA NA NA
Positive Net 

Benefits NA NA NA NA NA
Risk Only NA NA NA NA NA
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